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Abstract—In this paper, we consider the problem of distributed
time-varying sparse parameter estimation over sensor networks.
By first compressing the regression signals to remove the sparsity,
and then estimating the compressed parameters with the com-
pressed signals, a compressed distributed recursive least squares
algorithm with forgetting factor (FFLS) is proposed based on
compressive sensing theory. Under the compressed cooperative
stochastic excitation condition, we analyze the tracking bound of
the estimation error and establish the stability of the compressed
distributed FFLS algorithm. Our theoretical results do not rely
on independency and stationarity of the regression signals, which
makes it possible to be applied to the feedback system. Finally,
some simulation results are presented to demonstrate the superi-
ority of our proposed algorithm over the compressed distributed
least mean squares (LMS) algorithm and the uncompressed
distributed FFLS algorithm.

Index Terms—Sparse parameter identification, distributed re-
cursive least squares algorithm, compressive sensing, stochastic
dynamic system

I. INTRODUCTION

In recent years, distributed adaptive identification and filter-

ing algorithms have attracted widespread attention and been

applied to many fields such as signal processing, adaptive

control and bio-medicine [1]. A hot issue of distributed adap-

tive filtering is to process and estimate the high-dimensional

sparse signals. On the premise that the sparsity of the signal is

known, the algorithm can be pertinently designed to improve

the performance of parameter identification.

With the development of sparse estimation, researchers have

also proposed many distributed sparse parameter estimation

algorithms, among which a commonly used method is to add

penalty terms to the cost function. In [2], a sparse distributed

least mean squares (LMS) algorithm based on adapt-then-

combine strategy was developed by adding penalty term to

the cost function. Liu et al. in [3] adopted maximum likeli-

hood framework with l0 and l1 norm penalties and designed
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distributed sparse recursive least squares (RLS) estimators.

However, we note that these techniques took the full dimension

of the data into account, which may result in excessive

computational complexity and slow convergence speed.

Compressive sensing theory, as a burgeoning theory of

restoring sparse signals, has promising advancements in pro-

cessing and estimating sparse signals. Candès et al. in [4] in-

troduced some important properties to ensure the compressive

sensing performance, and this theory has been applied to adap-

tive filtering thereafter [5]–[7]. However, in the investigation of

the theoretical analysis about distributed sparse identification

algorithms, most existing literature assumes the independency,

stationarity or ergodicity of input signals, which generally can

not be satisfied in complex dynamic systems with various

feedback loops. To weaken the assumptions on input signals

and take the sparsity of regressors into consideration, some

alternative cooperative excitation conditions on the stochastic

signals are proposed, and the performance analysis of the

compressed distributed LMS and RLS algorithms are provided

in our previous works [8]–[10]. Compared with [9], [10], the

current paper aims at dealing with a more general case where

the parameters are time-varying.

In this paper, we investigate unknown sparse parameter

estimation for a discrete-time stochastic regression model over

sensor networks. We integrate compressive sensing methods to

the recursive least squares algorithm with forgetting factor and

propose a compressed distributed FFLS algorithm, which has

faster convergence speed than the compressed distributed LMS

algorithm in [8]. Compared with the traditional uncompressed

FFLS algorithm, it is proved that the proposed algorithm can

achieve more efficient parameter estimation in the case of

sparse signals. We introduce a compressed excitation condition

and theoretically establish the upper bound of the tracking

error in the case of time-varying parameter. Moreover, our

excitation condition also reveals the cooperative effect of

multiple sensors in the sense that sensors can collaborate to

achieve estimation, even if any sensor cannot do it alone.

It is worth pointing out that our results are applicable to

feedback systems, unlike the theoretical results in [5]–[7],

which rely on the assumption of independency or stationarity

of the regression signals.

The remainder of this paper is organized as follows. Section

II gives the problem formulation including the design of the

compressed distributed FFLS algorithm. The stability results

of the proposed algorithm are presented in Section III. Some

simulation results are provided in Section IV and the conclud-

ing remarks are given in Section V.
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II. PROBLEM FORMULATION

A. Some Preliminaries

1) Matrix Theory and Graph Theory: For an n × m-

dimensional real matrix A, the Euclidean norm of A is sym-

bolically represented by ‖A‖, i.e., ‖A‖ Δ
= {λmax(AAT )} 1

2 ,

where λmax(·) denotes the largest eigenvalue of the matrix.

Correspondingly, the smallest eigenvalue of the matrix is

denoted by λmin(·). For an m-dimensional real vector x, its

p-norm is defined as ‖x‖p = (
∑m

i=1 |xi|p)1/p, where xi is the

ith component of x and 1 ≤ p < ∞. If there is no special

indication, ‖x‖ refers to the 2-norm (also the Euclidean norm).

We also use ‖x‖0 to denote the number of non-zero elements

in x. The m-dimensional identity matrix is denoted by Im.

Considering a matrix sequence {Ak, k ≥ 0} and a positive

scalar sequence {ak, k ≥ 0}, if there exists a positive constant

C, such that ‖Ak‖ ≤ Cak holds for all k ≥ 0, then we say

Ak = O(ak).
For a multi-sensor network, we can construct a corre-

sponding topology G = {V, E ,A} to show the information

interaction between sensors. Take an n-sensor network for

instance, let the node set V = {1, 2, · · · , n}. The elements in

the adjacency matrix A = [aij ]1≤i,j≤n represent the weight

of information interaction between sensors. The diameter DG
of the graph G is defined as the maximum shortest length of

paths between any two nodes. In this paper, we suppose the

adjacency matrix is symmetric and stochastic.

2) Compressive Sensing Theory: A vector x0 ∈ R
m is

called s-sparse, if there are at most s non-zero elements in

it and s is far smaller than m. The essence of compressive

sensing is to restore high-dimensional sparse signals from a

small number of linear measurements. The sensing matrix

M ∈ R
d×m(d < m), which can map a vector in a high-

dimensional space R
m to a low-dimensional space R

d, is the

core of compressive sensing theory. Therefore, how to select

the sensing matrix so that the high-dimensional signal can be

well restored is an important issue. With regard to this point,

Candès and Tao [4] put forward the concept of “restricted

isometry property (RIP)” to measure the properties of sensing

matrices, and gave the proof that the sensing matrix satisfying

RIP can successfully restore the signal. The followings are

RIP-related concepts and conclusions.

Definition 2.1 (Restricted Isometry Property): For a d×m-

dimensional matrix M , if there exists a minimum constant

δs ∈ (0, 1) such that

(1− δs)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δs)‖x‖2

holds for any s-sparse vector x ∈ R
m, then we say that the

sensing matrix M satisfies the RIP of order s, and δs is the

restricted isometry constant of order s, correspondingly.

Lemma 2.1: [4] Consider a sparse signal observation model

with bounded disturbance ‖ε‖ ≤ C:

y0 = Mx0 + ε,

where x0 ∈ R
m is the s-sparse parameter vector to be

recovered, y0 ∈ R
d (d < m) is a low-dimensional observation.

Solve the following optimization problem to get the recovered

signal:

x∗
0 = arg min

x
{‖x‖1, s.t. ‖y0 −Mx‖ ≤ C}.

If the sensing matrix M satisfies 3s- and 4s-RIP, where δ3s+
3δ4s < 2, then the recovery error ‖x0−x∗

0‖ can be controlled

within a constant neighborhood of zero:

‖x0 − x∗
0‖ ≤ CsC,

where Cs =
4√

3(1−δ4s)−
√
1+δ3s

.

B. Discrete Regression Model

Let us consider the following discrete-time stochastic re-

gression model of n sensors (labeled as 1, 2, · · · , n):

yt+1,i = ϕT
t,iθt + wt+1,i, t ≥ 0, (1)

where yt,i is the scalar observation of sensor i at time t,
θt ∈ R

m is an s-sparse time-varying parameter vector to be

estimated by n sensors, ϕt,i ∈ R
m is the 3s-sparse random

regression vector of sensor i at time t, and the scalar wt,i is

the random measurement noise of sensor i at time t.
We denote the variation of the parameter vector as:

Δθt+1 = θt+1 − θt, t ≥ 0.

In particular, when Δθt ≡ 0, it degenerates to the time-

invariant parameter case.

It is worth pointing out that the regression vector sequence

{ϕt+1,i}∞t=0 in model (1) is often random and not independent.

For example, in the auto-regressive exogenous (ARX) model

(cf., [11]), the regression vector can be specifically expressed

as ϕt,i = [yt,i, · · · , yt−p+1,i, ut,i, · · · , ut−q+1,i]
T , where ut,i

denotes the input of sensor i at time t, and integers p, q indicate

that the regression vector contains the output information over

the past p time period as well as the input information over

the past q time period. Then, due to the existence of the

system noise wt,i, the regression vector is random rather than

deterministic and can not satisfy the i.i.d. assumption when

the control law ut,i = f(yk,i, k ≤ t) is designed based on

past observations.

The goals of this paper are to design a compressed dis-

tributed adaptive estimation algorithm where all sensors coop-

eratively track the unknown time-varying sparse parameter θt,
and establish the stability of the proposed algorithm without

imposing stringent independency or stationarity conditions on

the random regression vectors {ϕt,i}.

C. Compressed Distributed FFLS algorithm

In this section, we devise the compressed distributed FFLS

algorithm aiming at estimating the unknown sparse parameter

vector.

Consider the sparsity of regression vector ϕt,i, in order

to save the calculation cost and improve the tracking perfor-

mance, we utilize the sensing matrix M ∈ R
d×m to compress

the original high-dimensional sparse regression vector ϕt,i

into the low-dimensional regressors φt,i = Mϕt,i. The corre-

sponding compressed unknown parameter vector is denoted as

2435
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 27,2025 at 03:56:34 UTC from IEEE Xplore.  Restrictions apply. 



ζt = Mθt. Thus, the regression model (1) can be transformed

into

yt+1,i = ϕT
t,iθt + φT

t,iζt − φT
t,iζt + wt+1,i

= φT
t,iζt + ϕT

t,i(Im −MTM)θt + wt+1,i

= φT
t,iζt + w̄t+1,i, (2)

where w̄t+1,i = ϕT
t,i(Im−MTM)θt+wt+1,i can be seen as a

new extended error, including the original measurement noise

and the error caused by compressive sensing.
Next, the compressed system parameter estimates can be

obtained by applying the distributed FFLS algorithm [12] (i.e.,

(3)-(7)) to the compressed model (2), and finally, using the

restoration technique, we can get the corresponding sparse

original parameter values. Details are shown in Algorithm 1.

Algorithm 1: Compressed Distributed FFLS algorithm

Data: {yt,i, ϕt,i}ni=1, t = 0, 1, 2, · · ·
Result: {θ̂t+1,i}ni=1, t = 0, 1, 2, · · ·

1 For every sensor i ∈ {1, 2, · · · , n}, give an initial

estimation ζ̂0,i ∈ R
d, a positive definite matrix

P0,i ∈ R
d×d, and a common sensing matrix M ;

2 for each time t = 0, 1, 2, · · · do
3 for each sensor i ∈ {1, 2, · · · , n} do
4 Compress the regressors: φt,i = Mϕt,i;

5 Adapt sensor’s own estimates:

Lt,i =
Pt,iφt,i

λ+ φT
t,iPt,iφt,i

, (3)

ζ̄t+1,i = ζ̂t,i + Lt,i(yt+1,i − φT
t,iζ̂t,i), (4)

P̄t+1,i =
1

λ

(
Pt,i − Lt,iφ

T
t,iPt,i

)
; (5)

6 Combine with neighbors’ estimates:

P−1
t+1,i =

∑
j∈Ni

aijP̄
−1
t+1,j , (6)

ζ̂t+1,i = Pt+1,i

∑
j∈Ni

aijP̄
−1
t+1,j ζ̄t+1,j ; (7)

7 Restore the original signal:

θ̂t+1,i = arg min
θ∈B

‖θ‖1, (8)

where B = {θ|‖ζ̂t+1,i −Mθ‖ ≤ C} and C is

a given constant.
8 end
9 end

III. TRACKING PERFORMANCE OF THE ALGORITHM

Due to the lag of estimation, the error of time-varying

parameter estimation generally cannot converge to zero. What

we can do is to track the unknown time-varying parameters

and keep the tracking error within a small range, which is also

the meaning of algorithmic stability in this paper.
In this section, we will investigate the tracking performance

of our algorithm.

A. Estimation Error Equation

To obtain the compressed distributed estimation error equa-

tion, we first denote the compressed estimation error of single

sensor i as ζ̃t,i � ζt− ζ̂t,i with ζt = Mθt. Then, from (6) and

(7), we have

ζ̃t+1,i = ζt+1 − Pt+1,i

∑
j∈Ni

aijP̄
−1
t+1,j ζ̄t+1,j

=Pt+1,i

∑
j∈Ni

aijP̄
−1
t+1,jζt+1 − Pt+1,i

∑
j∈Ni

aijP̄
−1
t+1,j ζ̄t+1,j

=Pt+1,i

∑
j∈Ni

aijP̄
−1
t+1,j(ζt+1 − ζ̄t+1,j). (9)

Let Δζt := MΔθt, then by equations (1)-(5), we can further

obtain that

ζt+1 − ζ̄t+1,j

=ζt +Δζt+1 − ζ̂t,j − Lt,j(yt+1,j − φT
t,j ζ̂t,j)

=
(
Id − Lt,jφ

T
t,j

)
ζ̃t,j − Lt,jw̄t+1,j +Δζt+1

=λP̄t+1,jP
−1
t,j ζ̃t,j − Lt,jw̄t+1,j +Δζt+1. (10)

In order to centrally measure the estimation error of each

sensor, we introduce the following series of notations.

Yt = col{yt,1, · · · , yt,n}, Wt = col{wt,1, · · · , wt,n},
Φt = diag{φt,1, · · · , φt,n}, W t = col{w̄t,1, · · · , w̄t,n},
Pt = diag{Pt,1, · · · , Pt,n}, P̄t = diag{P̄t,1, · · · , P̄t,n},
Zt = col{ζt, · · · , ζt︸ ︷︷ ︸

n

}, ΔZt = col{Δζt, · · · ,Δζt︸ ︷︷ ︸
n

},

Z̃t = col{ζ̃t,1, · · · , ζ̃t,n}, Lt = diag {Lt,1, · · · , Lt,n} ,
Hence, combining the equations (9) and (10), we can obtain

the distributed augmented error formula:

Z̃t+1 = λPt+1A P−1
t Z̃t − Pt+1A P̄−1

t+1(LtW t+1 +ΔZt),
(11)

where A = A⊗ Id.

B. Definitions and Assumptions

For the randomness of regression vector {ϕt,i, t ≥ 0}ni=1,

we first give some necessary definitions and assumptions on

random matrix before going straight to the theorem discussion.

Definition 3.1: [8] A sequence of random matrices {At, t ≥
0} defined on the basic probability space (Ω,F , P ) is deemed

Lp-stable (p > 0) if supt≥0 E(‖At‖p) < ∞. To quantify the

stability of random variable At, its Lp-norm is defined as

‖At‖Lp � (E(‖At‖p)) 1
p , where E(·) denotes the expectation

operator.

For convenience, we introduce the following class [8] for a

scalar sequence a = {at, t ≥ 0}:

S0(α) =
{
a : at ∈ [0, 1),E

⎛
⎝ t∏

j=k+1

(1− aj)

⎞
⎠ ≤ Mαt−k,

∀t ≥ k, ∀k ≥ 0, for some M > 0
}
.
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Assumption 3.1: (Compressed Cooperative Excitation Con-

dition) For the adapted sequences {φt,i,Ft, t ≥ 0}, with Ft

denoting a non-decreasing sequence of σ-algebras, there exists

an integer l > 0 such that {αt} ∈ S0(α) for some α ∈ (0, 1),
where αt is defined by

αt � λmin

[
E

( 1

n(1 + l)

n∑
i=1

(t+1)l∑
k=tl+1

φk,iφ
T
k,i

1 + ‖φk,i‖2
∣∣∣Ftl

)]
. (12)

with E(·|·) being the conditional expectation operator.

Remark 3.1: The excitation conditions imposed on the

regression vectors are widely used to guarantee the effective

estimation of the identification algorithm. Since the regression

vector {ϕt,i} and the estimated signals are high-dimensional

and sparse, excitation conditions directly on the original

regression vector ϕt,i may not be satisfied. So it is more

reasonable to consider the excitation condition on compressed

signals φt,i, which is weaker than on the uncompressed one.

Assumption 3.1 serves as a fundamental underpinning for

ensuring the stability of the distributed LMS algorithm (e.g.,

[13]). In fact, the assumption indicates that the sequence {αt}
has a “lower bound” that may change over time. For the

special case that inft αt ≥ α0 with α0 ∈ (0, 1), it is clear

that Assumption 3.1 can be satisfied.

Assumption 3.2: The graph G of the sensor network is

undirected and connected.

Remark 3.2: The connectivity of the network topology is a

very reasonable and common assumption. Under Assumption

3.2, we have ad � mini,j∈{1,2,··· ,n}[ADG ]ij > 0.
Assumption 3.3: The sensing matrix M ∈ R

d×m satisfies

the RIP with order 4s. The 3s- and 4s-restricted isometry

constants are designated as δ3s and δ4s, and fulfill δ3s+3δ4s <
2.

Remark 3.3: Assumption 3.3 aligns with the condition in

Lemma 2.1 to ensure a tightly controlled upper bound on the

reconstruction error when recovering the original signal from

its compressed estimate. There are many construction methods

to make the sensing matrix M satisfy Assumption 3.3, such

as random matrices with i.i.d. entries, Fourier transform-based

ensembles and general orthogonal measurement ensembles [4].

C. Main Results

Lemma 3.1: [12] For Pt generated by (5) and (6), under

Assumptions 3.1 and 3.2, if the forgetting factor λ satisfies

α
a2
d

32pml(4l+DG−1) < λ < 1, then for any p ≥ 1, Pt is Lp-stable,

where α, l are defined in Assumption 3.1.

Based on Lemma 3.1, we can get the upper bound of

tracking error under some conditions on the estimated signal

and its variation. The key step is to analyze the impact of

sensing error ϕT
t,i(Im − MTM)θt brought by compressive

sensing on stability. We use the properties of the sensing

matrix M to deal with the cumulative effect of sensing error.

Theorem 3.1: Consider model (2) and the error equation

(11), under the conditions in Lemma 3.1, if for some p ≥ 1,

σp(δ4s) := supt ‖μt‖Lp
< ∞, where μt =

3δ4s√
1−δ4s

‖θt‖L6p +

‖Wt‖L3p+
√
1 + δ4s‖Δθt+1‖L3p . And for any i ∈ {1, · · · , n},

supt ‖φt,i‖L6p
< ∞, then the compressed tracking error {Z̃t}

is Lp-stable, i.e., there exists a constant C1 such that

lim sup
t→∞

‖Z̃t‖Lp
≤ C1σp(δ4s).

Proof 3.1: To simplify the expression, let the state transition

matrix Ψ(t, k) be recursively defined by

Ψ(t+ 1, k) = λPt+1A P−1
t Ψ(t, k),Ψ(k, k) = Idn.

From equation (5) and the matrix inverse formula [14],

it can be easily conducted that P̄−1
t+1,i = λP−1

t,i + φt,iφ
T
t,i.

Combine the fact P̄−1
t+1 = λP−1

t +ΦtΦ
T
t and the definition of

Lt, it holds P̄−1
t+1Lt = Φt. Then substituting it into (11), we

have

Z̃t+1 = λPt+1A P−1
t Z̃t − Pt+1A (ΦtWt+1 + P̄−1

t+1ΔZt).

Therefore, by Hölder inequality and the assumption that A is

stochastic, we have

‖Z̃t+1‖Lp
= ‖Ψ(t+ 1, 0)Z̃0

−
t∑

k=0

Ψ(t+1, k+1)(Pk+1A (ΦkW k+1+P̄−1
k+1ΔZk))‖Lp

≤‖λt+1Pt+1A
t+1P−1

0 Z̃0‖Lp

+
∥∥ t∑

k=0

λt−kPt+1A
t−k+1(ΦkW k+1 + P̄−1

k+1ΔZk)
∥∥
Lp

≤λt+1‖Pt+1‖L3p
‖P−1

0 Z̃0‖L3p

+

t∑
k=0

λt−k‖Pt+1‖L3p
‖Φk‖L3p

‖W t+1‖L3p

+

t∑
k=0

λt−k‖Pt+1‖L3p
‖P̄−1

k+1‖L3p
‖ΔZk‖L3p

.

We should examine each of the three terms on the right-hand

side of the above formula to determine their respective upper

bounds. By Lemma 3.1, we have supt≥0 E(‖Pt‖)p < ∞, ∀p.

Thus our task reduces to figure out the boundedness of

{W t+1}, {ΔZt} and {P−1
t }.

Since ϕt,i is 3s-sparse and θt is s-sparse, their corre-

sponding non-zero entries can be indexed by i1, ..., i3s and

j1, ..., js, respectively. We can construct reduced versions of

these vectors by keeping only the components at these specific

positions and denote the truncated forms of ϕt,i and θt as ϕ
(4s)
t,i

and θt,4s, which now contain the combined total of 4s non-

zero elements from both vectors. In parallel, select and retain

the column vectors corresponding to the 4s positions specified

for ϕt,i and θt, discarding the rest. The resulting matrix after

this dimensionality reduction is a d× 4s-dimensional matrix,

which is denoted as M4s.

Under Assumption 3.3, it is posited that all eigenvalues of

MT
4sM4s lie within the interval [1 − δ4s, 1 + δ4s], and it can
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be obtained that

‖ϕT
t,i(Im −MTM)θt‖ = ‖(ϕ(4s)

t,i )T (I4s −MT
4sM4s)θt,4s‖

≤‖(ϕ(4s)
t,i )T ‖‖(1 + δ4s)I4s −MT

4sM4s‖‖θt,4s‖
+ δ4s‖(ϕ(4s)

t,i )T ‖‖θt,4s‖
≤2δ4s‖ϕ(4s)

t,i ‖‖θt,4s‖+ δ4s‖ϕ(4s)
t,i ‖‖θt,4s‖

=3δ4s‖ϕt,i‖‖θt‖ ≤ 3δ4s√
1− δ4s

‖Mϕt,i‖‖θt‖

=
3δ4s√
1− δ4s

‖φt,i‖‖θt‖. (13)

By the definition of w̄t+1,i in (2) and inequality (13), it can

be derived that

‖w̄t+1,i‖L3p
= ‖ϕT

t,i(Im −MTM)θt + wt+1,i‖L3p

≤‖ϕT
t,i(Im −MTM)θt‖L3p

+ ‖wt+1,i‖L3p

≤ 3δ4s√
1− δ4s

‖φt,i‖L6p
‖θt‖L6p

+ ‖wt+1,i‖L3p
. (14)

Meanwhile, note that Δθk+1 is 2s-sparse, by the RIP of the

matrix M , it can be obtained that

‖Δζt+1‖L3p
= ‖MΔθt+1‖L3p

≤
√
1 + δ4s‖Δθt+1‖L3p

.
(15)

As for P−1
t+1, based on the condition supt ‖φt,i‖L6p

< ∞,

it follows that

‖P−1
t+1‖L3p

≤ λ‖P−1
t ‖L3p

+ ‖φt,i‖2L6p
≤ · · ·

≤ λt+1‖P−1
0 ‖L3p

+
t∑

k=0

λt−k‖φk,i‖2L6p
< ∞. (16)

Ultimately, the tracking error ‖Z̃t+1‖Lp comes to

the following conclusion by combining the conditions

supt ‖φt,i‖L6p
< ∞, σp(δ4s) < ∞ with inequalities (14),

(15) and (16):

‖Z̃t+1,i‖Lp

≤O(λt+1) +
t∑

k=1

λt−k‖Pt+1‖L3p
‖Φk‖L3p

‖Wt‖L3p

+

t∑
k=1

λt−k‖Pt+1‖L3p
‖Φk‖L3p

‖Φk‖L6p

3δ4s√
1− δ4s

‖θk‖L6p

+

t∑
k=1

λt−k‖Pt+1‖L3p
‖P−1

k+1‖L3p

√
1 + δ4s‖Δθk+1‖L3p

≤O(λt+1) + C1σp(δ4s),

where C1 is a positive constant depending on the upper bounds

of {Pk}, {Φk} and {P−1
k }. This completes the proof of the

theorem.
Using Lemma 2.1, we finally determine the upper bound of

the estimation error for the original high-dimensional signal.
Theorem 3.2: Under the same conditions in Theorem 3.1,

the upper bound for the original estimation error is character-

ized thus:

lim sup
t

‖θt − θ̂t‖Lp
≤ CsC1σp(δ4s),

where Cs is defined in Lemma 2.1.

Proof 3.2: Theorem 3.1 provides the following upper bound

of compressed estimation error

sup
t

‖ζ̃t+1,i‖Lp
= sup

t
‖ζt+1 − ζ̂t+1,i‖Lp

= sup
t

‖Mθt+1 − ζ̂t+1,i‖Lp ≤ C1σp(δ4s).

Based on Lemma 2.1 and C = C1σp(δ4s) in equation (8)

of Algorithm 1, it can be deduced that the recovered signal

θ̂t+1 obeys lim supt ‖θt+1− θ̂t+1,i‖Lp
≤ CsC1σp(δ4s), which

completes the proof.

Remark 3.4: From Theorems 3.1 and 3.2, it is clear that the

upper bound of the tracking error gets lower as the restricted

isometry constant δ4s decreases. In the special case of time-

invariant parameters and noiseless systems, the estimation er-

ror can be very small as long as the restricted isometry constant

δ4s is small enough. Compared with [3], [15], we can see that

our theoretical findings are derived without necessitating the

independence or stationarity of the regression signal, which

makes our conclusions more applicable to feedback systems.

IV. SIMULATION RESULTS

In this section, we present some simulation results to verify

the efficacy of the compressed distributed FFLS algorithm

based on high-dimensional sparse data.

We consider a parameter identification problem with a 2-

sparse parameter vector θt having a total dimension m =
80 over a 12-sensor network. Only the first two compo-

nents of the time-varying parameter vector θt are non-

zero, whose variation at instant t follows the normal dis-

tribution 1
t2 N (0, 12). Assume the observation noises in (1)

are independent Gaussian random variables with a distri-

bution of wt,i ∼ N(0, 0.22). Next, we generate the re-

gressor vectors {ϕt,i ∈ R
80, i = 1, · · · , 12, t ≥ 0} by

ϕt,i = [0, · · · , 0, 1.1t +
t−1∑
k=0

1.1kεt−k,i

︸ ︷︷ ︸
ith

, 0, · · · , 0]T , where the

sequence {εt,i, t ≥ 1, i = 1, · · · , 12} is independent and

identically distributed in N(0, 0.12). It was proved in [16]

that when the sensing matrix is a Gaussian random matrix

with zero mean and variance 1/d, it satisfies the RIP with

high probability under appropriate choices of dimensions.

Thus, we configure the sensing matrix M as a 10×80-

dimensional Gaussian random matrix, whose every element

[M ]ij ∼ N(0, 1/10).
From the setting of the regressor ϕt,i, we can verify that

the compressed cooperative excitation condition (12), which

corresponds to Assumption 3.1, is indeed satisfied. Besides,

the connected sensor network is constructed by the Metropolis

rule [17], thus Assumptions 3.1-3.3 can all be guaranteed.

We compare our algorithm with the compressed non-

cooperative FFLS algorithm (i.e., the adjacency matrix A = I)

by using identical initial values. Besides, for solving the

optimization problem represented by equation (8) in the com-

pressed algorithms, we employ the OMP method described in
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[18]. We run the simulation 200 times to ensure reliable and

robust results.
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Fig. 1. Estimation errors of 12 sensors under compressed distributed FFLS
algorithm (left) and the compressed non-cooperative FFLS algorithm (right).

The left subgraph of Fig. 1 shows the estimation perfor-

mance of the proposed distributed algorithm, whose estima-

tion errors of all sensors quickly decrease to around 0. The

subgraph on the right shows the estimation performance of

the sensors without information interaction, and none of the

sensors can estimate the signal successfully, which verifies the

importance of cooperation among sensors.

Next, we compare our algorithm with the compressed LMS

algorithm and the uncompressed distributed FFLS algorithm.

The estimation errors (computed over 100 times) of these

three scenarios are depicted in Fig. 2, which demonstrates that

our proposed algorithm has a much faster rate of decreasing

in estimation error than the compressed distributed LMS

algorithm, while the uncompressed distributed FFLS fails to

achieve the estimation target.
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Fig. 2. Estimation errors of the compressed distributed FFLS algorithm,
the compressed distributed LMS algorithm in [13], and the uncompressed
distributed FFLS algorithm.

V. CONCLUDING REMARKS

This paper developed a compressed distributed FFLS algo-

rithm to estimate the time-varying sparse parameter. We es-

tablished the stability of the proposed algorithm by combining

compressive sensing theory with stochastic stability theory.

The introduced compressed cooperative excitation condition

guaranteed effective estimation without assuming the indepen-

dency and stationarity of the regression signal. It is shown

that the compressed distributed FFLS algorithm can realize

accurate estimation of high-dimensional sparse signals, while

the uncompressed one cannot complete the tracking task due

to the lack of adequate excitation condition. Some interesting

problems deserve to be further investigated, e.g., extending our

main results to the time-delay scenario and utilizing the idea

of feedback to overcome the influence of sensing error.
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