
Control Theory and Technology (2025) 23:161–175
https://doi.org/10.1007/s11768-025-00253-x

RESEARCH ART ICLE

Stability analysis of distributed Kalman filtering algorithm for
stochastic regression model

Siyu Xie1 · Die Gan2 · Zhixin Liu3,4

Received: 18 June 2024 / Revised: 25 November 2024 / Accepted: 20 December 2024 / Published online: 22 April 2025
© The Author(s), under exclusive licence to South China University of Technology and Academy of Mathematics and Systems Science, Chinese Academy
of Sciences 2025

Abstract
The work proposes a distributed Kalman filtering (KF) algorithm to track a time-varying unknown signal process for a
stochastic regression model over network systems in a cooperative way. We provide the stability analysis of the proposed
distributed KF algorithm without independent and stationary signal assumptions, which implies that the theoretical results
are able to be applied to stochastic feedback systems. Note that the main difficulty of stability analysis lies in analyzing the
properties of the product of non-independent and non-stationary random matrices involved in the error equation. We employ
analysis techniques such as stochastic Lyapunov function, stability theory of stochastic systems, and algebraic graph theory to
deal with the above issue. The stochastic spatio-temporal cooperative information condition shows the cooperative property of
multiple sensors that even though any local sensor cannot track the time-varying unknown signal, the distributed KF algorithm
can be utilized to finish the filtering task in a cooperative way. At last, we illustrate the property of the proposed distributed
KF algorithm by a simulation example.
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L p-exponential stability · Stochastic regression model
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1 Introduction

Nowadays, more and more data can be collected through
sensor networks, and how to use the collected data to esti-
mate or track an unknown parameter process has obtained
plenty of research attention [1–8]. Basically, there exist two
different ways to process the data, i.e., the centralized and
distributed methods. For the centralized processing method,
measurements or estimates from all sensors over the network
need to be transferred to a fusion center, which may have
no feasibility due to energy consumption, limited communi-
cation capabilities, privacy considerations or packet losses.
Moreover, this method has poor robustness because when
the fusion center is damaged the whole network will col-
lapse. Because of these limitations, the distributed processing
method arises, where each sensor will estimate the unknown
parameter vectors by the local noisy observations and the
data from the neighboring sensors. Compared with the cen-
tralized method, the distributed method is more robust and
scalable [4].

Note that different types of distributed estimation algo-
rithms can be obtained by combining different cooperative
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strategies with different algorithms, such as incremental least
mean squares (LMS) [4], consensus LMS [9, 10], diffusion
LMS [5, 6, 11], consensus and diffusion stochastic gradient
(SG) [12], consensus least squares (LS) [7, 8], incremental
LS [13], diffusionLS [14–18], distributedKF [19–32], and so
on. References [9–11, 18, 33, 34] established the theoretical
results on stability and performance for the distributed LMS
and LS algorithms without requiring the stationarity and
independency conditions for the regression vectors. Since
the KF algorithm would be optimal when the noise and the
parameter variation are white and Gaussian noises, and the
linearized observation matrices in the extended KF, which
are widely used to estimate the state of a nonlinear engineer-
ing system, are often stochastic, here we focus on the KF
algorithm for a stochastic regression model with stochastic
observation vector in this work. Another reason why we con-
sider this question is that the stability results in the existing
work are far from satisfactory, as it is difficult to apply to
non-stationary and non-independent signals generated from
practical stochastic feedback systems.

In fact, plenty of research was focused on distributed
KF algorithms where observation matrices of the system
are deterministic. For example, [21] studied a distributed
KF based on consensus strategies, and [22] presented a
hybrid distributed information fusion algorithm and estab-
lished convergence results under very mild topology condi-
tions. Moreover, [23] introduced a distributed KF based on
the covariance intersection method, and analyzed stability
properties. In addition, [24] developed a consensus and inno-
vations type Kalman filter, and [25] proposed a gossip-based
distributed KF for deterministic time-varying observation
matrices, and provided the error reduction rate. Furthermore,
[26] and [27] considered consensus Kalman filters where the
communication channels have random failures. A distributed
KF algorithmwith data packet losses for linear time-invariant
discrete-time systems was studied in [28], and a distributed
KF for deterministic time-varying observation matrices with
mild assumption on local observability and network topology
was studied in [29]. Moreover, [30] provided a boundedness
analysis of the error covariancematrix for deterministic time-
varying observation matrices, [31] developed a distributed
filtering algorithm to estimate a sparse signal sequence for the
dynamic model with deterministic observation matrix, and
[32] presented distributed filtering algorithms based on tun-
able weights under attack for the deterministic time-invariant
observation matrix.

To our knowledge, a first attempt to consider distributed
KF algorithms with general random coefficients for the
dynamic system was made in [35], where local innovation
pairs are diffused to collectively track the unknown param-

eters. However, the proposed distributed KF algorithm is
required to exchange a lot of information since it needs to
diffuse L times for each time iteration, where L is larger
than or equal to the diameter of the sensor network topology
which increases as the network grows. Several communi-
cation cycles are required for information fusion at each
time step. Notice that in making several communication
cycles in one time instant may achieve the optimal (in the
MMSE sense), or nearly optimal, state estimates. However,
this greatly increases the communication complexity of the
algorithm.

Wewill investigate a well-known distributed time-varying
stochastic linear regression model in this work, and pro-
vide a theoretical analysis for the stability of our proposed
distributed KF algorithm which is developed by the covari-
ance intersection fusion rule (cf., [23, 26, 30]) and based
on diffusion strategy. Note also that it only needs to diffuse
one time for each time iteration, which greatly reduces the
communication complexity compared with [35]. The main
contributions of this work are summarized as the following
three-fold:

• The stability analysis of the distributed KF algorithm
can be provided without imposing the commonly used
assumptions such as stationarity and independence on the
stochastic regression vectors (cf., [14–17]), which shows
that the theoretical results are expected to be applied to
distributed adaptive control problems.

• Under a stochastic cooperative information assumption,
we present the stability analysis of the distributed KF
algorithm, which is a temporal and spatial union infor-
mation condition on the random regression vectors, and
implies that the networked system can finish the tracking
task collaboratively even though no local node can due
to a lack of necessary excitations.

• The proposed distributed KF algorithm in this paper
focuses on tracking unknown time-varying signals where
the observations is taken from the widely used time-
varying linear regression model, while most of the
existing literature focuses on the study of distributed KF
algorithms where the observation matrices are determin-
istic, see e.g., [21–32].

For the remainder of the paper, the problem formula-
tion is given in Sect. 2. The error equations, mathematical
definitions, and assumptions are provided in Sect. 3. Sec-
tions4 and 5 provide the main theoretical results and proofs,
respectively. A case study is given in Sect. 6 followed by the
conclusions in Sect. 7.

1 3



Stability analysis of distributed... 163

2 Problem formulation

2.1 Graph theory

Here we assume that the sensor network contains n vertexes
and we model the network topology as a directed graph G.
We denote V = {1, . . . , n} as the set of vertexes, and denote
E ⊆ V×V as the set of directed arrows. Also, an arrow (i, j)
is directed from the tail i to the head j . For a vertex in the
network, the number of head (tail) ends adjacent to a vertex
is its indegree (outdegree). A path from j1 to jt is a sequence
of sensors j1, j2, . . . , jt (t ≥ 2), such that ( ji , ji+1) ∈ E
for i = 1, . . . , t − 1. If there exists a path between any two
vertexes in the digraph,weknow that the digraphG is strongly
connected. The diameter DG of the graph G is defined as the
maximum shortest path length between any two vertexes.

Here we use A = {ai j }n×n to describe the structure of
G, which is called the weighted adjacency matrix, and we
know that ai j > 0 if (i, j) ∈ E , and ai j = 0 otherwise. If∑n

j=1 a ji = ∑n
j=1 ai j = 1,∀i = 1, . . . , n, the graph G is

balanced. Note also that the weighted adjacency matrixA of
a directed graph may be asymmetric. The vertex i is used to
denote the i th sensor, and the arrow (i, j) is used to denote
the communication from the vertex i to the vertex j . We use
Ni = {� ∈ V |(�, i) ∈ E}, to denote the neighboring set of
the vertex i , and any neighboring nodes have the ability to
send data over a directed arrow between them.

2.2 Observationmodel

The main task of the paper is to develop a distributed method
to estimate or track an unknown time-varying parameter vec-
tor ζ k by cooperating with each other in networked systems.
Assume that each sensor i at time instant k collects the
measurement {ok,i ,ϕk,i } that follows the widely used time-
varying and stochastic regression model:

ok,i = ϕT
k,iζ k + nk,i , (1)

where k ≥ 0 is the time instant, i ∈ {1, . . . , n} is the i th
sensor, (·)T is the transpose operator, ok,i ∈ R is the scalar
measurement, ϕk,i ∈ R

m is the stochastic regressor signal,
nk,i ∈ R is the measurement noise, and ζ k ∈ R

m is the
time-varying parameter to be estimated by all sensors in the
network. The variation of ζ k is denoted by δk , i.e.,

δk = ζ k − ζ k−1, k ≥ 1, (2)

where δk ∈ R
m is an undefined vector. To simplify the nota-

tions, here we focus on the case where ok,i is a scalar and
ϕk,i is a column vector. While if ok,i is a vector and ϕk,i
is a matrix, we can do a similar analysis and get the same
results. By choosing ϕk,i and ok,i appropriately, we can see

that many technical problem formulations fit the structure
(1), for examples, collaborative spectral sensing, signal pro-
cessing, target localization, and so on, [4].

Note that while most literature (cf., [21–32]) focused on
deterministic observation vectors or matrices, here we con-
sider the case where the observation vector ϕk,i in (1) is
stochastic. Although the Eq. (2) is a simplified systemmodel
compared to the general linear time-varying system models
considered in e.g., [21–32], this is the first step for us to
consider distributed KF algorithms for the dynamical sys-
tem with random coefficients, i.e., ϕk,i , which has practical
importance for stochastic feedback systems. For instance, if
ϕk,i = [ok,i , · · · , ok−p,i , xk,i , · · · , xk−q,i ]T which consists
of current and past input–output data of the systems, and
xk,i is the input signal at time k, then the model (1) can be
reduced to the well-known autoregressive model with exoge-
nous inputs (ARX) with time-varying coefficients. Also, it
is easy to see that ϕk,i is stochastic and cannot satisfy the
independent and identically distributed condition. Also, the
general linear time-varying systemmodel will be considered
in future work.

Tracking or estimating a time-varying signal is a critical
problem in control engineering, system identification, signal
processing, and so on. Different recursive algorithms were
derived in existing work (see e.g., [36, 37]), which usually
have the following form:

ζ̂ k+1,i = ζ̂ k,i + Lk,i (ok,i − ϕT
k,i ζ̂ k,i ),

where ζ̂ k,i ∈ R
m is the estimate of node i at time instant

k, Lk,i ∈ R
m is called the adaptation gain that requires to

be designed. Note that Lk,i cannot tend to zero as k tends
to infinity since the unknown parameter to be estimated is
time-varying.

The most common ways of selecting Lk,i can obtain the
LMS algorithm, i.e., Lk,i = μϕk,i , where μ > 0 is the step
size; and the recursive LS algorithm with forgetting factor,
i.e.,

Lk,i = Ωk,iϕk,i

α + ϕT
k,iΩk,iϕk,i

,

Ωk+1,i = 1

α

[

Ωk,i − Ωk,iϕk,iϕ
T
k,iΩk,i

α + ϕT
k,iΩk,iϕk,i

]

,

where an initial matrix Ω0,i ∈ R
m×m is positive definite and

α ∈ (0, 1) is a forgetting factor; and the KF algorithm, i.e.,

Lk,i = Ωk,iϕk,i

ri + ϕT
k,iΩk,iϕk,i

,

Ωk+1,i = Ωk,i − Ωk,iϕk,iϕ
T
k,iΩk,i

ri + ϕT
k,iΩk,iϕk,i

+ Q,

(3)
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where ri ∈ R and Q ∈ R
m×m may be viewed as a priori

estimates for the variances of nk,i and δk , and ri > 0, Q > 0
hold. For simplicity of discussion, here we take ri and Q
as constants. The KF algorithm would be optimal when the
parameter variation and the noise are white Gaussian noises.
Therefore, we focus on the KF algorithm in this work.

As far as we know, the best result that guarantees the sta-
bility of the KF algorithm for each sensor i in the network
and allows {ϕk,i } to be a large class of stochastic signals was
given in [36], which assumed that {ϕk,i ,Fk,i } is an adapted
process1 and satisfies the following individual excitation con-
dition, namely, for each i , there exists an integer κ > 0 such
that {αk,i , k ≥ 0} ∈ S0(α) for some α ∈ (0, 1), and

αk,i � λmin

{

E

[
1

κ + 1

(k+1)κ∑

j=kκ+1

ϕ j,iϕ
T
j,i

1 + ‖ϕ j,i‖2
∣
∣
∣Fkκ,i

]}

, (4)

and S0(α) is defined in Definition 3. Note that λmax{·} and
λmin{·} are defined as the largest and the smallest eigen-
values of the matrix, and E[·|Fkκ,i ] denotes the conditional
mathematical expectation operator. For the case that stochas-
tic regression vectors {ϕk,i } are high-dimensional or sparse,
it is difficult or even impossible to make the condition (4)
satisfied. We can improve this situation by designing a dis-
tributed KF algorithm in which the measurements of nodes
are exchanged in a sensor network.

2.3 Distributed KF algorithm

In the following part, we present the distributedKF algorithm
(see Algorithm 1).

Algorithm 1 can be derived from some existing literature
for distributed Kalman filters (cf., [23, 26, 30]) by assuming
that the observation and states obey (1) and (2), respectively.
In fact, Algorithm 1 is designed by using the structure of
the standard KF algorithm (3) and the covariance intersec-
tion fusion rule in [38]. In Step 1, each sensor i first uses
the Kalman filter update equations (3) to obtain the predic-
tion estimate ζ̄ k+1,i and prediction covariancematrix Ω̄k+1,i .
Since the estimates and covariance matrices from different
sensorsmay contain complementary information, combining
these two kinds of information together may help to achieve
a more accurate estimation of the unknown parameter. We
denote xk+1,i � Ω−1

k+1,i ζ̂ k+1,i and x̄k+1,i � Ω̄−1
k+1,i ζ̄ k+1,i .

Thus in Step 2, each sensor i combines the inverse covari-
ance matrix Ω̄−1

k+1,� and information vector x̄k+1,� from its
neighboring sensors in a convex manner to obtain the matrix
Ω−1

k+1,i and vector xk+1,i , that isΩ−1
k+1,i =∑�∈Ni

a�iΩ̄
−1
k+1,�

and xk+1,i =∑�∈Ni
a�i x̄k+1,i , which correspond to (7) and

(8).

1 Fk,i is any family of non-decreasing σ -algebras.

Algorithm 1 Distributed KF algorithm
Initialization: For each sensor i ∈ {1, · · · , n}, we select an arbitrary
initial column vector̂ζ 0,i ∈ R

m and an arbitrary initial positive definite
matrix Ω0,i ∈ R

m×m .
Output: The estimates {̂ζ k+1,i }ni=1, for each time instant k =
0, 1, 2, · · · and for each sensor i = 1, · · · , n
Step 1 Adapt:

ζ̄ k+1,i = ζ̂ k,i + Ωk,iϕk,i

ri + ϕT
k,iΩk,iϕk,i

(ok,i − ϕT
k,i ζ̂ k,i ), (5)

Ω̄k+1,i = Ωk,i − Ωk,iϕk,iϕ
T
k,iΩk,i

ri + ϕT
k,iΩk,iϕk,i

+ Q, (6)

Step 2 Combine:

Ω−1
k+1,i = ∑

�∈Ni

a�i Ω̄
−1
k+1,�, (7)

ζ̂ k+1,i = Ωk+1,i
∑

�∈Ni

a�i Ω̄
−1
k+1,�ζ̄ k+1,�, (8)

where ri ∈ R, Q ∈ R
m×m and ri > 0, Q > 0.

Note that the main contribution of this paper is to provide
a theoretical analysis of Algorithm 1 without independent
and stationary signal assumptions on regression signals ϕk,i .
Note that if A = In , the proposed distributed KF algorithm
will degenerate to the non-cooperative KF algorithm (3).

3 Some preliminaries

3.1 Error equation

Before analyzing the distributed KF algorithm, we first need
to derive the estimation error equation. For the sensor i , define
the following two estimation errors:

ζ̃ k,i = ζ k − ζ̂ k,i ,
˜̄ζ k,i = ζ k − ζ̄ k,i .

Then from (7) and (8), we have

ζ̃ k+1,i =ζ k+1 − Ωk+1,i
∑

�∈Ni

a�iΩ̄
−1
k+1,�ζ̄ k+1,�

=Ωk+1,i
∑

�∈Ni

a�iΩ̄
−1
k+1,�ζ k+1

− Ωk+1,i
∑

�∈Ni

a�iΩ̄
−1
k+1,�ζ̄ k+1,�

=Ωk+1,i
∑

�∈Ni

a�iΩ̄
−1
k+1,�

˜̄ζ k+1,�. (9)

From (1), (2) and (5), we can also obtain that

˜̄ζ k+1,i =ζ k+1 − ζ̄ k+1,i
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=ζ k + δk+1 − ζ̂ k,i

− Ωk,iϕk,i

ri + ϕT
k,iΩk,iϕk,i

(ok,i − ϕT
k,i ζ̂ k,i )

=ζ̃ k,i + δk+1 − Ωk,iϕk,i

ri + ϕT
k,iΩk,iϕk,i

(ϕT
k,iζ k

− ϕT
k,i ζ̂ k,i + nk,i )

=
(
Im − Ωk,iϕk,iϕ

T
k,i

ri + ϕT
k,iΩk,iϕk,iϕ

T
k,i

)
ζ̃ k,i

− Ωk,iϕk,i

ri + ϕT
k,iΩk,iϕk,i

nk,i + δk+1. (10)

Denote

Lk,i = Ωk,iϕk,i

ri + ϕT
k,iΩk,iϕk,i

,

we have

˜̄ζ k+1,i = (Im − Lk,iϕ
T
k,i )̃ζ k,i − Lk,i nk,i + δk+1. (11)

To proceed with our analysis, we present the following
notations to write the above error equation into a vector form:

where the notation col{· · · } represents a column vector of
the corresponding vectors, the notation diag{· · · } represents
a block matrix formed in a diagonal manner of the corre-
sponding matrices or vectors,A is the adjacency matrix, and
⊗ represents the Kronecker product.

By (1) and (2), we have

Ok = ΦT
k Zk + Nk, (12)

and

Δk = Zk − Zk−1, k ≥ 1. (13)

For Algorithm 1, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z̄k+1 = Ẑk + Lk(Ok − ΦT
k Ẑk),

Ω̄k+1 = Ωk − LkΦ
T
k Ωk + Qdiag,

vec{Ω−1
k+1} = A Tvec{Ω̄−1

k+1},
Ẑk+1 = Ωk+1A TΩ̄

−1
k+1 Z̄k+1,

(14)

where the notation vec{·} represents an operator that stacks
the blocks of a block diagonal matrix on top of each other.

By Z̃k = Zk − Ẑk and ˜̄Zk = Zk − Z̄k , we know from
(11) that

˜̄Zk+1 = (Imn − LkΦ
T
k )Z̃k − LkNk + Δk+1,

and by (9),we have the following error equation ofAlgorithm
1,

Z̃k+1 =Ωk+1A
TΩ̄

−1
k+1
˜̄Zk+1

=Ωk+1A
TΩ̄

−1
k+1(Imn − LkΦ

T
k )Z̃k

− Ωk+1A
TΩ̄

−1
k+1LkNk

+ Ωk+1A
TΩ̄

−1
k+1Δk+1. (15)

We will analyze the stability of the above distributed
KF algorithm under non-independent and correlated signal
assumptions in Sect. 4. Note that the tracking error from the
distributed filtering error equation (15) hinges on the expo-
nential stability of its homogeneous equation, i.e.,

Z̃k+1 = Ωk+1A
TΩ̄

−1
k+1(Imn − LkΦ

T
k )Z̃k,

by Propositions 2.1 and 2.2 in [36], i.e., the stochas-
tic internal-external stability results. Also, the exponen-
tial stability of the homogeneous equation depends essen-
tially on the properties of product of random matrices

Ωk+1A TΩ̄
−1
k+1(Imn − LkΦ

T
k ).

3.2 Some definitions

Here we need some definitions on the stability of random
matrices from [36]. The Euclidean norm of a matrix Y ∈
R
m×n is denoted as ‖Y‖ = (λmax{YY T}) 1

2 , and the L p-norm

of a random matrix X is defined as ‖X‖L p = {E[‖X‖p]} 1
p ,

where E[·] denotes the mathematical expectation operator.

Definition 1 Suppose that {Xk, k ≥ 0} defined on the basic
probability space (Ω,F , P) is a random matrix sequence.
The sequence {Xk} is called L p-stable if supk≥0 E[‖Xk‖p] <

∞, holds for some p > 0.

Definition 2 For a square random matrix sequence X =
{Xk, k ≥ 0}, if X ∈ Sp(α) for p ≥ 0, where

Sp(α) =
{

X : ∥∥
k∏

t=s+1
(I − Xt )

∥
∥
L p

≤ Cαk−s,

∀k ≥ s + 1,∀s ≥ 0, for constant C > 0

}

,

(16)

then {I − Xk, k ≥ 0} is called L p-exponentially stable with
the parameter α ∈ [0, 1).
Remark 1 For the sequence {ηk} generated by ηk+1 = (I −
Xk)ηk + εk+1, k ≥ 0, we know from [36] that {Xk, k ≥ 0} ∈
Sp(α) is in some sense a necessary and sufficient condition
for the stability of ηk . Note that the analysis of the product

1 3
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Table 1 Vector form and Dimension

Vector form Dimension Vector form Dimension

Ok � col{ok,1, . . . , ok,n} R
n Z̃k � col{̃ζ k,1, . . . , ζ̃ k,n} where ζ̃ k,i = ζ k − ζ̂ k,i R

mn

Zk � col{ζ k , . . . , ζ k︸ ︷︷ ︸
n

} R
mn ˜̄Zk � col{̃ζ̄ k,1, . . . ,

˜̄ζ k,n} where ˜̄ζ k,i = ζ k − ζ̄ k,i R
mn

Φk � diag{ϕk,1, . . . ,ϕk,n} R
mn×n Lk � diag{Lk,1, . . . , Lk,n} R

mn×n

Nk � col{nk,1, . . . , nk,n} R
n Ωk � diag{Ωk,1, . . . , Ωk,n} R

mn×mn

Δk � col{δk , . . . , δk︸ ︷︷ ︸
n

} R
mn Qdiag � diag{Q, . . . , Q

︸ ︷︷ ︸
n

} R
mn×mn

Ẑk � col{̂ζ k,1, . . . , ζ̂ k,n} R
mn Ω̄k � diag{Ω̄k,1, . . . , Ω̄k,n} R

mn×mn

Z̄k � col{ζ̄ k,1, . . . , ζ̄ k,n} R
mn A � A ⊗ Im R

mn×mn

of random matrices is a mathematically difficult task. How-
ever, we may transfer the analysis of the product of random
matrices to the analysis of a certain class of scalar sequences
for linear random equations generated from adaptive filter-
ing algorithms. Also, the corresponding scalar sequence can
be studied based on some information assumption on the
regressor signals.

Thus, we introduce a subclass of S1(α), whichwill be used
to introduce the stochastic cooperative information condition
in the following part.

Definition 3 For a scalar random sequence x = {xk, k ≥ 0}
and α ∈ (0, 1), we define

S0(α) = {x : xk ∈ [0, 1],E[
k∏

t=s+1
(1 − xt )

] ≤ Cαk−s,

∀k ≥ s + 1,∀s ≥ 0, for constant C > 0
}
.

3.3 Assumptions

We need the following widely used network topology
assumption for the stability analysis.

Assumption 1 (Network topology condition) The digraph G
is balanced and strongly connected.

Remark 2 By Assumption 1, we know that when s is larger
than or equal to the graph’s diameter, i.e., s ≥ DG , then each
element of the matrix As = A · · ·A︸ ︷︷ ︸

s

will be positive.

In the following part,wewill denote thatFk = σ {ϕ j,i , δ j ,

n j−1,i , j ≤ k, i = 1, . . . , n}.
Assumption 2 (Stochastic cooperative information condi-
tion) There exists an integer κ > 0 such that {αk, k ≥ 0} ∈
S0(α) for some α ∈ (0, 1), where

αk �λmin

{

E

[
1

n(κ + 1)

∑n
i=1

(k+1)κ∑

j=kκ+1

ϕ j,iϕ
T
j,i

1 + ‖ϕ j,i‖2
∣
∣
∣Fkκ

]}

.

(17)

Remark 3 Almost all the existing literature on the stabil-
ity and performance analyses on distributed adaptive filters
requires some stringent assumptions on the regressors, such
as independence and stationarity (see e.g., [14–17]), which
cannot be satisfied for signals generated by stochastic sys-
tems with feedback loops. In fact, Assumption 2 contains
not only temporal union information but also spatial union
information of all the sensors, which is more general than
the independent or stationary signal conditions. It can also
be considered as an extension of the excitation condition
(4) from a single sensor to the network. This conditional
mathematical expectation-based information condition for
an individual sensor was first given in [37] and then refined in
[36], which is often used for exponential stability (see [36])
of the adaptive filtering algorithms.

Note that Assumption 2 shows that to track an unknown
and time-varying parameters, the regressor vectors {ϕk,i }
may have some sort of “persistent excitations” in the sense
that the prediction of the “future” is non-degenerate given
the “past”. Moreover, under Assumption 2, the distributed
KF algorithm can be shown to have the capability to accom-
plish the tracking task cooperatively even if any sensor cannot
track the unknown signal individually.

4 Main results

4.1 One basic result

We first present a basic result on how to convert the investi-
gation of Sp(·) to that of a sequence in S0(·) before giving the
stability analysis of the proposed distributed KF algorithm.
Here we introduce the Lyapunov equation as follows,

Ω̄k+1 = (Imn − Ak)Ωk(Imn − Ak)
T + Qk, (18)

and

vec{Ω−1
k } = A Tvec{Ω̄−1

k }, k ≥ 0, (19)
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where Ak, Qk,Ωk, Ω̄k ∈ R
mn×mn , and Ω0 > 0. The fol-

lowing theorem transfers the research of {Ak} to the research
of a scalar random sequence in S0(α), and also gives condi-
tions for the L p-exponential stability of (15).

Theorem 1 Assume that {Ak} is a sequence of randommatri-
ces, and {Qk} is a sequence of positive definite random
matrices. Let {Ωk} and {Ω̄k} recursively be generated by
(18) and (19), we have for all t > s,

∥
∥
∥
t−1∏

k=s
Ωk+1A TΩ̄

−1
k+1(Imn − Ak)

∥
∥
∥
2

≤
{ t−1∏

k=s

(
1 − 1

1 + ‖Q−1
k Ω̄k+1‖

)}{
‖Ω t‖ · ‖Ω−1

s ‖
}
. (20)

Thus, if {Ωk} satisfies the following two assumptions:

1.
{ 1

1 + ‖Q−1
k Ω̄k+1‖

}
∈ S0(α), for some α ∈ [0, 1);

2. supt≥s≥0 ‖(‖Ω t‖ · ‖Ω−1
s ‖)‖L p < ∞, for some p ≥ 1,

then

{Imn − Ωk+1A
TΩ̄

−1
k+1(Imn − Ak)} ∈ Sp(α

1/2p). (21)

Remark 4 Note that the proof of Theorem 1 is given in
Sect. 5. This result does not require that Ak is non-negative
and definite, and we may convert the verification of (21) to
the following two tasks: 1) to prove that a given random
scalar sequence belongs to S0(α); and 2) to verify the L p

stability of a certain process. By Remark 1, we know that

{Imn − Ωk+1A TΩ̄
−1
k+1(Imn − Ak)} ∈ Sp(α1/2p) is in some

sense the necessary and sufficient condition for the stability
of Z̃k . Therefore, by Theorem 1, we now proceed to provide
the stability result of the proposed distributed KF algorithm
in Sect. 4.2.

4.2 Stability of the distributed KF algorithm

For convenience, we denote

Ak � LkΦ
T
k , R � diag{r1, . . . , rn} ⊗ Im,

Qk � RLkLT
k + Qdiag.

(22)

By (14), we have

Ω̄k+1 =(Imn − LkΦ
T
k )Ωk(Imn − LkΦ

T
k )T

+ RLkLT
k + Qdiag

=(Imn − Ak)Ωk(Imn − Ak)
T + Qk, (23)

which has the same form of (18) and (19). Therefore, before
applyingTheorem1,wefirst establish the boundedness result
of {Ωk}.
Lemma 2 For {Ωk} generated by (14), if Assumptions 1 and
2 are satisfied, there exists a positive constant ε∗ such that
for any ε ∈ [0, ε∗),

sup
k≥0

E[exp(ε‖Ωk‖)] < ∞. (24)

We put the proof of Lemma 2 in Sect. 5. The following
result can be obtained by Lemma 2 directly, and we omit the
proof here.

Corollary 1 For {Ωk} generated by (14), if Assumptions 1
and 2 are satisfied, for any p > 0, then we have

sup
k≥0

E[‖Ωk‖p] < ∞. (25)

Before applying Theorem 1, we also need to verify that
the given random scalar sequence is in S0(α).

Lemma 3 For {Ωk} generated by (14), if Assumptions 1 and
2 are satisfied, for anyμ ∈ (0, 1], then there exists a constant
α ∈ (0, 1) such that

{ μ

1 + ‖Q−1
diag‖ · ‖Ω̄k+1‖

}
∈ S0(α). (26)

The proof of Lemma 3 is presented in Sect. 5. By Lemmas
2 and 3, the assumptions 1) and 2) in Theorem 1 can be
easily verified. Thus, we can establish the L p-exponential
stability of (15). Furthermore, we can get an upper bound
of the tracking error for Algorithm 1. Here the following
notation log(·) is denoted as the logarithmic operator based
on the natural number e.

Theorem 4 Consider the stochastic observation model (1)
and the distributed KF algorithm (14). Denote πk = ‖Nk‖+
‖Δk+1‖. Under Assumptions 1 and 2, if for some β > 2 and
r ≥ 1,

τr � sup
k

‖πk log
β(e + πk)‖Lr < ∞, (27)

then for any p < r , the tracking error {Z̃k, k ≥ 0} is L p-
stable, and

lim sup
k→∞

‖Z̃k‖L p ≤ c[τr log1+β/2(e + τ−1
r )],

where c > 0 is a finite constant depending on {Φk}, R, Qdiag
and p.

1 3



168 S. Xie et al.

Remark 5 The proof of Theorem4 is given in Sect. 5. ByThe-
orem 4, we can see that the tracking error Z̃k is positively
related to the parameter variation Δk+1 and the noise Nk .
Here we just require the moment assumptions on the param-
eter variation and the measurement noise, and do not require
independency, stationarity or Gaussian property. Note that if
Φk and {Nk,Δk} are assumed to be independent, then con-
dition (27) can be replaced by supk ‖πk‖Lr < ∞ which is a
natural condition for the L p-stability.

Remark 6 For the case that the communication topology has
a certain uncertainty, to be specific, the switching commu-
nication graphs are governed by a homogeneous irreducible
and aperiodic Markov chain whose states belong to a finite
set. If all possible digraphs are balanced and the union of
those digraphs is strongly connected, then we can obtain a
similar result as that of Theorem 4 since the key inequality
(34) may still hold, which will be investigated in our future
work.

5 Proofs of main results

5.1 Proof of Theorem 1

We need the following lemmas for the proof.

Lemma 5 [39] For any matrices X ,Y , Z and D with proper
dimensions, and the relevant matrices are all invertible, then
(X + Y DZ)−1 = X−1 − X−1Y (D−1 + Z X−1Y )−1Z X−1.

Lemma 6 [18] Assume that A = {ai j } ∈ R
n×n is the adja-

cency matrix, and denoteA = A⊗ Im. Let Ω̄k+1 and Ωk+1

be defined in (14), then for any k ≥ 1,

A TΩ̄
−1
k+1A ≤ Ω−1

k+1, A Ωk+1A
T ≤ Ω̄k+1. (28)

The proof of Theorem 1 is provided here:

Proof Consider the following equation for t > s,

xk+1 = Ωk+1A
TΩ̄

−1
k+1(Imn − Ak)xk, k ∈ [s, t − 1], (29)

where xs ∈ R
mn is taken to be deterministic and ‖xs‖ = 1.

Then

xt =
t−1∏

k=s
Ωk+1A TΩ̄

−1
k+1(Imn − Ak)xs . (30)

Next, we consider the following Lyapunov function: Vk =
xTk Ω−1

k xk . Denote Bk = I − Ak , then by (29), Lemmas 5
and 6, we have

Vk+1 = xTk+1Ω
−1
k+1xk+1

= xTk B
T
k Ω̄

−1
k+1A Ωk+1A

TΩ̄
−1
k+1Bkxk, (31)

and by (23) and (28), we have

BT
k Ω̄

−1
k+1A Ωk+1A

TΩ̄
−1
k+1Bk

≤ BT
k Ω̄

−1
k+1Bk = BT

k (BkΩkBT
k + Qk)

−1Bk

= Ω−1
k − (Ωk + ΩkBT

k Q
−1
k BkΩk)

−1

= Ω
− 1

2
k (Imn−[Imn + Ω

1
2
k B

T
k Q

−1
k BkΩ

1
2
k ]−1)Ω

− 1
2

k

≤ (1 − [1 + ‖Q−1
k BkΩkBT

k ‖]−1)Ω−1
k , (32)

which yields

Vk+1 ≤
(
1 − 1

1 + ‖Q−1
k Ω̄k+1‖

)
Vk .

Thus,

Vt ≤
t−1∏

k=s

(
1 − 1

1 + ‖Q−1
k Ω̄k+1‖

)
Vs .

Hence we have

∥
∥
∥
t−1∏

k=s
Ωk+1A TΩ̄

−1
k+1(Imn − Ak)

∥
∥
∥
2

= max‖xs‖=1
‖xt‖2 = max‖xs‖=1

‖xtΩ− 1
2

t Ω
1
2
t ‖2

≤ max‖xs‖=1
‖xtΩ− 1

2
t ‖2‖Ω

1
2
t ‖2 = max‖xs‖=1

Vt‖Ω t‖

≤
{ t−1∏

k=s

[
1 − 1

1 + ‖Q−1
k Ω̄k+1‖

]}{
‖Ω t‖ max‖xs‖=1

Vs
}

≤
{ t−1∏

k=s

[
1 − 1

1 + ‖Q−1
k Ω̄k+1‖

]}{
‖Ω t‖ · ‖Ω−1

s ‖
}
,

(33)

which completes the proof. �

5.2 Proof of Lemma 2

The following lemma investigates the property of {Ωk}which
will be used for the proof of Lemma 2. Note that the notation
Tr(·) is denoted as the trace of the corresponding matrix.

Lemma 7 Let Assumption 1 be satisfied and {Ωk} be gener-
ated by (14). Then

Ts+1 ≤ (1 − bs+1)Ts + d, (34)

where

Ts =
sκ ′−1∑

k=(s−1)κ ′+DG
Tr(Ωk+1), T0=0, bs+1= a2minc

1
s+1

nκc2s+1

,
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c1s+1=Tr
(( n∑

j=1
Ωsκ ′, j +κ ′Q

)2 n∑

j=1

(s+1)κ ′−1∑

k=sκ ′+DG

ϕk, jϕ
T
k, j

1+‖ϕk, j‖2
)
,

c2s+1 =
n∑

j=1
(r j + 1) ·

(
1 + λmax

{ n∑

j=1
Ωsκ ′, j + κ ′Q

})

· Tr
( n∑

j=1
Ωsκ ′, j + κ ′Q

)
,

d = 3

2
nh(κ ′ + 1)Tr(Q),

and amin = min
i, j∈V

a
(DG)

i j > 0, κ ′ = κ + DG , and κ is the

constant appearing in Assumption 2.

Proof Let a(k)
i j denote the i-th row j-th column element of

the matrix Ak, k ≥ 1, where a(1)
i j = ai j . By (14) and the

inequality
(∑n

j=1 ai j A j

)−1 ≤ ∑n
j=1 ai j A

−1
j with A j > 0

[40], we know that for any k ∈ [sκ ′ + DG, (s + 1)κ ′]

Ωk,i =
{ n∑

j=1
a jiΩ̄

−1
k, j

}−1 ≤
n∑

j=1
a jiΩ̄k, j

=
n∑

j=1
a ji (Ω̄k, j − Q) + Q

=
n∑

j=1
a ji (Ω

−1
k−1, j + r−1

j ϕk−1, jϕ
T
k−1, j )

−1 + Q

≤
n∑

j=1
a jiΩk−1, j +Q

≤
n∑

j=1
a ji

( n∑

t=1
at jΩk−2,t

)
+2Q

=
n∑

j=1
a(2)
j i Ωk−2, j + 2Q

≤ · · · ≤
n∑

j=1
a(k−sκ ′)
j i Ωsκ ′, j + (k − sκ ′)Q

≤
n∑

j=1
a(k−sκ ′)
j i Ωsκ ′, j + κ ′Q. (35)

Hence by the matrix inversion formula, i.e., Lemma 5, it
follows that for any k ∈ [sκ ′ + DG, (s + 1)κ ′],

Ωk+1,i

=
{ n∑

j=1
a jiΩ̄

−1
k+1, j

}−1

=
{ n∑

j=1
a ji [(Ω−1

k, j + r−1
j ϕk, jϕ

T
k, j )

−1 + Q]−1
}−1

≤
n∑

j=1
a ji (Ω

−1
k, j + r−1

j ϕk, jϕ
T
k, j )

−1 + Q

≤
n∑

j=1
a ji

[( n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

)−1

+ r−1
j ϕk, jϕ

T
k, j

]−1 + Q

= Q +
n∑

j=1
a ji

[ n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

−
( n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

)
ϕk, jϕ

T
k, j

·
∑n

t=1 a
(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

r j + ϕT
k, j

(∑n
t=1 a

(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

)
ϕk, j

]

=
n∑

j=1
a(k−sκ ′+1)
j i Ωsκ ′, j + (κ ′ + 1)Q

−
n∑

j=1
a ji

( n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

)
ϕk, jϕ

T
k, j

·
(∑n

t=1 a
(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

)

r j + ϕT
k, j

(∑n
t=1 a

(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

)
ϕk, j

≤
n∑

j=1
a(k−sκ ′+1)
j i Ωsκ ′, j + (κ ′ + 1)Q

−
n∑

j=1
a ji

( n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

) ϕk, jϕ
T
k, j

1 + ‖ϕk, j‖2

·
∑n

t=1 a
(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

(r j + 1)
(
1 + λmax

{∑n
t=1 a

(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

}) .

(36)

From Assumption 1 and Remark 2, it is clear that a(DG)

j i ≥
amin > 0, where amin = min

i, j∈V
a

(DG)

i j > 0, and DG is denoted

by the diameter of the graph G. Hence, we have a(k)
j i ≥ amin

for any k > DG .
By Cr - and Schwarz inequalities, it is easy to obtain that∑n
j=1 a jb j ≤∑n

j=1 a j
∑n

j=1 b j , where the constants a j ≥
0, b j ≥ 0. Furthermore, by choosing a j = c j

d j
, b j = d j

with c j ≥ 0, d j > 0, then we can conclude that
∑n

j=1
c j
d j

≥
∑n

j=1 c j∑n
j=1 d j

. For k ∈ [sκ ′ + DG, (s + 1)κ ′], we have by using

the above inequalities that

Tr(Ωk+1)

= Tr
( n∑

i=1
Ωk+1,i

)

≤ Tr
( n∑

i=1

n∑

j=1
a(k−sκ ′+1)
j i Ωsκ ′, j

)
+ n(κ ′ + 1)Tr(Q)

− Tr
( n∑

i=1

n∑

j=1
a ji

[ n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

] ϕk, jϕ
T
k, j

1 + ‖ϕk, j‖2

·
∑n

t=1 a
(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

(r j + 1)
(
1 + λmax

{∑n
t=1 a

(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

})
)
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=Tr
( n∑

j=1
Ωsκ ′, j

)
+ n(κ ′ + 1)Tr(Q)

−
n∑

j=1

1

(r j +1)
(
1+λmax

{∑n
t=1 a

(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

})

· Tr
([ n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

] ϕk, jϕ
T
k, j

1 + ‖ϕk, j‖2

·
[ n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

])

≤Tr(Ωsκ ′ ) + n(κ ′ + 1)Tr(Q)

− 1
n∑

j=1
(r j +1)

(
1+λmax

{∑n
t=1 a

(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

})

· Tr
( n∑

j=1

[ n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

] ϕk, jϕ
T
k, j

1 + ‖ϕk, j‖2

·
[ n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

])

≤Tr(Ωsκ ′ ) + n(κ ′ + 1)Tr(Q)

−
Tr
(∑n

j=1 Ωsκ ′, j
)

∑n
j=1(r j +1)

∑n
j=1

(
1+λmax

{∑n
t=1 a

(k−sκ ′)
t j Ωsκ ′,t +κ ′Q

})

· 1

Tr
(∑n

j=1 Ωsκ ′, j + κ ′Q
)

· Tr
( n∑

j=1

[ n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

] ϕk, jϕ
T
k, j

1 + ‖ϕk, j‖2

·
[ n∑

t=1
a(k−sκ ′)
t j Ωsκ ′,t + κ ′Q

])

≤Tr(Ωsκ ′ ) + n(κ ′ + 1)Tr(Q)

− Tr(Ωsκ ′ )

n
n∑

j=1
(r j + 1) ·

(
1 + λmax

{ n∑

t=1
Ωsκ ′,t + κ ′Q

})

·
a2minTr

((∑n
t=1 Ωsκ ′,t + κ ′Q

)2∑n
j=1

ϕk, jϕ
T
k, j

1 + ‖ϕk, j‖2
)

Tr
(∑n

j=1 Ωsκ ′, j + κ ′Q
) . (37)

Summing both sides of (37), we obtain that

Ts+1

=
(s+1)κ ′−1∑

k=sκ ′+DG
Tr(Ωk+1) ≤ κTr(Ωsκ ′) + nκ(κ ′ + 1)Tr(Q)

− a2minκTr(Ωsκ ′)

nκ
n∑

j=1
(r j + 1) ·

(
1 + λmax

{ n∑

t=1
Ωsκ ′,t + κ ′Q

})

·
Tr
(( n∑

t=1
Ωsκ ′,t + κ ′Q

)2 n∑

j=1

(s+1)κ ′−1∑

k=sκ ′+DG

ϕk, jϕ
T
k, j

1 + ‖ϕk, j‖2
)

Tr
( n∑

j=1
Ωsκ ′, j + κ ′Q

)

≤ κTr(Ωsκ ′) − bs+1κTr(Ωsκ ′) + nκ(κ ′ + 1)Tr(Q).

Again we have

hTr(Ωsκ ′)

=
sκ ′−1∑

k=(s−1)κ ′+DG

n∑

j=1
Tr(Ωsκ ′, j )

≤
sκ ′−1∑

k=(s−1)κ ′+DG

n∑

j=1
Tr
( n∑

t=1
a(sκ ′−k)
t, j Ωk+1,t+(sκ ′−k)Q

)

= Ts + 1

2
nκ(κ ′ + 1)Tr(Q), (38)

and

Ts+1 ≤ (1 − bs+1)Ts + 3

2
nκ(κ ′ + 1)Tr(Q)

= (1 − bs+1)Ts + d, s ≥ 0, (39)

which completes the proof. �
Proof of Lemma 2 DenoteHs = Fsκ ′−1. Then it is clear that
Ts and bs areHs-measurable, and

bs+1 ∈
[
0,

a2min∑n
i=1(ri + 1)

]
. (40)

By the inequality Tr(B2) ≥ m−1(Tr(B))2 with B ∈ R
m×m

being the positive definite matrix, we have

E[bs+1|Hs ]

≥
a2minn(1 + κ)α′

sTr
((∑n

j=1 Ωsκ ′, j + κ ′Q
)2)

nκ
(∑n

i=1 ri + n
)
(1 + κ ′‖Q‖)Tr

(∑n
j=1 Ωsκ ′, j + κ ′Q

)

≥
a2minα

′
s

[
Tr
(∑n

j=1 Ωsκ ′, j + κ ′Q
)]2

m
(∑n

i=1 ri + n
)
(1 + κ ′‖Q‖)Tr

(∑n
j=1 Ωsκ ′, j + κ ′Q

)

=
a2minα

′
sTr
(∑n

j=1 Ωsκ ′, j + κ ′Q
)

m
(∑n

i=1 ri + n
)
(1 + κ ′‖Q‖)

≥ a2minκ
′‖Q‖α′

s

m
(∑n

i=1 ri + n
)
(1 + κ ′‖Q‖)

, (41)

where

α′
s = pλmin

{
E

[ n∑

j=1

(s+1)κ ′−1∑

k=sκ ′+DG

ϕk, jϕ
T
k, j

1 + ‖ϕk, j‖2
∣
∣
∣Hs

]}

with p = 1
n(1+κ)

. By this condition and applying Lemmas

2.1−2.3 in [36], it is easy to see that {bk+1} ∈ S0(γ ) where
γ ∈ [0, 1). Consequently, using the definition of S0(·), we
know that

E

[ t∑

k=s
(1 − bk+1)

]
≤ Cγ t−s+1,∀t ≥ s ≥ 0, (42)
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where C > 0 and γ ∈ [0, 1) are two constants.
FromLemma7,weknow that for any ε > 0, exp(εTs+1) ≤

exp((1 − bs+1)εTs) · exp(dε). By the inequality exp(ax) ≤
a exp(x) + 1, 0 < a < 1, x > 0, we get

exp(εTs+1) ≤ exp(dε) · [(1 − bs+1) exp(εTs) + 1]. (43)

From this it is clear that if ε∗ is chosen to be small enough
such that exp(dε)γ < 1, then we have by (42) and (43) that

sup
s≥0

E[exp(εTs)] < ∞,∀ε ∈ (0, ε∗).

This completes the proof. �

5.3 Proof of Lemma 3

Denote

xs = κ(1 + ‖Q−1
diag‖ · ‖Qdiag‖) + ‖Q−1

diag‖Ts
μ

,

where Ts is defined in Lemma 7. Then we have

xs+1 ≤(1 − bs+1)xs

+ κ(1 + ‖Q−1
diag‖ · ‖Qdiag‖) + d‖Q−1

diag‖
μ

.

It is easy to see from (41), Assumption 2 and Lemma 2.3
in [36] that Lemma 3.1 in [36] is applicable to the above
equation. Hence we know that

{ 1

xs

}
∈ S0(γ ),

for some γ ∈ (0, 1). Note that

xs

=
sκ ′−1∑

k=(s−1)κ ′+DG

1+‖Q−1
diag‖‖Qdiag‖+‖Q−1

diag‖Tr(Ωk+1)

μ
.

Similar to the proof of Lemma 5 in [37], it follows that

{ μ

1 + ‖Q−1
diag‖ · ‖Qdiag‖ + ‖Q−1

diag‖Tr(Ωk)

}
∈ S0(α)

holds for some α ∈ (0, 1). Then we know that

{ μ

1 + ‖Q−1
diag‖ · ‖Qdiag‖ + ‖Q−1

diag‖ · ‖Ωk‖
}

∈ S0(α).

Since (Ω̄k+1 − Qdiag)
−1 = Ω−1

k + R−1ΦkΦ
T
k , we have

Ω̄k+1 ≤ Ωk + Qdiag,

‖Q−1
diag‖ · ‖Ω̄k+1‖

≤ ‖Q−1
diag‖ · ‖Ωk‖ + ‖Q−1

diag‖ · ‖Qdiag‖.

By this and the property of S0(α), we can obtain that

{ μ

1 + ‖Q−1
diag‖ · ‖Ω̄k+1‖

}
∈ S0(α)

holds for some α ∈ (0, 1).

5.4 Proof of Theorem 4

By (23) and the definition of Qk in (22),
we obtain that Qk ≥ Qdiag and Ω̄k ≥ Qdiag. Hence, by

the definition of Ω̄
−1
k , we know that

‖Ω−1
k ‖ ≤ ‖Ω̄−1

k ‖ ≤ ‖Q−1
diag‖.

By Theorem 1, we have for t > s,

∥
∥
∥
t−1∏

k=s
Ωk+1A TΩ̄

−1
k+1(Imn − Ak)

∥
∥
∥

≤
{ t−1∏

k=s

(
1 − 1

1 + ‖Q−1
diag‖ · ‖Ω̄k+1‖

) 1
2
}

·
{
‖Ω t‖ 1

2 · ‖Q−1
diag‖

1
2

}
. (44)

Note that

‖Lk‖ ≤ ‖Ωk‖ 1
2

2
√
rmin

, (45)

and

‖Ωk+1A
TΩ̄

−1
k+1‖

≤ ‖Ωk+1‖ · ‖Ω̄−1
k+1‖ ≤ ‖Ωk+1‖ · ‖Q−1

diag‖ (46)

hold, where rmin = mini=1,...,n{r1, . . . , rn}. By the error
equation (15), we have

Z̃k+1 =
k∏

i=0
Ω i+1A TΩ̄

−1
i+1(Imn − Ai )Z̃0

+
k∑

i=0

[ k∏

j=i+1
Ω j+1A TΩ̄

−1
j+1(Imn − A j )

· Ω i+1A
TΩ̄

−1
i+1 · (−LiN i + �i+1)

]
.

By (44)–(46), we obtain the following inequality for p < r

‖Z̃k+1‖L p
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≤
∥
∥
∥

k∏

i=0
Ω i+1A TΩ̄

−1
i+1(Imn − Ai )Z̃0

∥
∥
∥
L p

+‖Q−1
diag‖

3
2

k∑

i=0

∥
∥
∥

k∏

j=i+1

(
1− 1

2(1+‖Q−1
diag‖ · ‖Ω̄ j+1‖)

)

· ‖Ωk+1‖ 1
2 ‖Ω i+1‖

(
1 + ‖Ω i‖ 1

2

2
√
rmin

)
πi

∥
∥
∥
L p

≤
∥
∥
∥

k∏

i=0
Ω i+1A TΩ̄

−1
i+1(Imn − Ai )Z̃0

∥
∥
∥
L p

+ ‖Q−1
diag‖

3
2 sup
i≥0

‖Ω i‖Lq

·
k∑

i=0

∥
∥
∥

k∏

j=i+1

(
1 − 1

2(1 + ‖Q−1
diag‖ · ‖Ω̄ j+1‖)

)

· ‖Ωk+1‖ 1
2

(
1 + ‖Ω i‖ 1

2

2
√
rmin

)
πi

∥
∥
∥
Lr

. (47)

By Lemma 2 and the Schwarz inequality, we have

sup
k≥i

E[exp(ε‖Ωk+1‖ 1
2 · ‖Ω i‖ 1

2 )]

≤ sup
k≥i

{E[exp(ε‖Ωk+1‖)]} 1
2 · {E[exp(ε‖Ω i‖)]} 1

2

< ∞.

By Lemmas 2, 3 and the condition (27), we can see that the
rest part of the proof can be obtained by following the proof
of Theorem 4.1 in [36], we omit the details of the proof here.

6 Simulation results

A simulation example is given here to show the cooperative
property of networked systems: even though no individual
nodes can track the unknown time-varying parameter vec-
tors, the networked system can still accomplish the tracking
task collaboratively. Besides, the performance properties of
the distributed KF algorithm are given in contrast to other
distributed adaptive filtering algorithms.

A networked system composed of n = 6 nodes is consid-
ered here, and A is chosen as follows,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

4/5 1/5 0 0 0 0
0 4/5 1/5 0 0 0
0 0 4/5 1/5 0 0
0 0 0 4/5 1/5 0
0 0 0 0 4/5 1/5
1/5 0 0 0 0 4/5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hence the corresponding graph is directed, balanced, and
strongly connected.

An unknown 4-dimensional time-varying signal ζ k will
be tracked, and we assume that the parameter variation in (2)
obeys a Gaussian distribution, i.e., δk ∼ N (0, 0.04, 4, 1).
The stochastic measurement noises {nk,i , k ≥ 1, i =
1, 2, 3, 4, 5, 6} in (1) are chosen to be independent identi-
cally distributed (i.i.d.) with nk,i ∼ N (0, 0.01, 1, 1). The
regression vectors ϕk,i (i = 1, 2, 3, 4, 5, 6) are given by the
a state space model as follows:

{
xk,i = Ai xk−1,i + Biεk,i ,

ϕk,i = Ci xk,i ,
(48)

where {εk,i } (i = 1, 2, 3, 4, 5, 6) are i.i.d. with εk,i ∼
N (0, 0.4, 1, 1), and

A1 = A3 = A5 = diag{1/2, 2/3, 3/4, 2/5},
A2 = A4 = diag{1/3, 1/2, 5/6, 3/5},
A6 = [col{3/4, 3/4, 3/4, 3/4}, 04×3],
B1 = B5 = (1, 0, 0, 0)T, B2 = B6 = (0, 1, 0, 0)T,

B3 = (0, 0, 1, 0)T, B4 = (0, 0, 0, 1)T,

C1 = C5 =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , C2 = C6 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

C3 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠ , C4 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1

⎞

⎟
⎟
⎠ .

It is easy to check that Assumption 2 is satisfied.
For numerical simulations, let x0,i = (1, 1, 1, 1)T, ζ 0 =

(1, 1, 1, 1)T, ζ̂ 0,i = (0, 0, 0, 0)T,Ω0,i = I4, ri = 0.1 (i =
1, 2, 3, 4, 5, 6) and Q = 0.1× I4. Here we will run the sim-
ulation process 200 times with the same initial states. Thus,
for each node i , we can obtain the following 200 sequences:

{‖ζ̂ j
k,i − ζ

j
k‖2, k = 1, . . . , 1000},

i = 1, . . . , 6, j = 1, . . . , 200,

where j means the j-th simulation result. Then

1

200

200∑

j=1
‖ζ̂ j

k,i − ζ
j
k‖2, i = 1, . . . , 6, k = 1, . . . , 1000

is used to approximate the tracking error of sensor i in Fig. 1,
and

1

200n

200∑

j=1

n∑

i=1
‖ζ̂ j

k,i − ζ
j
k‖2, k = 1, . . . , 1000
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is used to approximate the average tracking errors over the
whole network in Figs. 2 and 3.

Figure1 shows the tracking errors of the six sensors using
the non-cooperative traditional KF algorithm and the pro-
posed distributed KF algorithm. From Fig. 1, we can see that
if we use the non-cooperative one to track ζ k , the errors of
all six sensors are large since all sensors do not satisfy the
information assumption (4), while the tracking errors of all
six sensors in the distributed KF algorithm fall into the small
neighborhood of 0 because all sensors cooperatively satisfy
Assumption 2.

For the same regression vectors and initial settings as
above, Fig. 2 compares our distributed KF algorithm ( ri =
0.1 (i = 1, 2, 3, 4, 5, 6) and Q = 0.1 × I4) with three
types of distributed LMSalgorithms (i.e., distributed normal-
ized LMS, combination then adaption (CTA) type distributed
LMS and adaption then combination (ATC) type distributed
LMS, see e..g, [10, 11]. Both the step sizes of CTA type
and ATC type distributed LMS algorithms are chosen to be
μ = 0.8. Also, the two step sizes of distributed normalized
LMS algorithm are chosen to be μ = 0.5 and ν = 0.4. As
depicted in Fig. 2, at time instant k = 400, the distributed KF
algorithm exhibits a tracking error of approximately 0.011,
significantly outperforming the ATC type, CTA type, and
distributed normalized LMS algorithms, which respectively
show tracking errors of approximately 2.106, 2.141, and
2.191. Furthermore, at time k = 600, the distributed KF
algorithm maintains its precision with a tracking error of
approximately 0.016, while theATC type, CTA type, and dis-
tributed normalized LMS algorithm exhibit tracking errors of
approximately 2.029, 2.064, and 2.143, respectively, under-
scoring the superiority of the distributed KF algorithm in
terms of tracking error.

Moreover, for the same regression vectors and initial set-
tings as above, Figs. 3 and 4 show the impact of measurement
noise nk,i and parameter variation δk on the performance
of the distributed KF algorithm with ri = 0.1 (i =
1, 2, 3, 4, 5, 6) and Q = 0.1 × I4, respectively. From Fig. 3,
we see that a direct correlation between the magnitude of
noise variance and the size of the tracking error. That is, the
tracking error of the distributed KF algorithm is positively
related to the noise variance. FromFig. 4, it is evident that our
algorithm can achieve effective tracking on different param-
eter variations, thereby demonstrating its robustness.

7 Concluding remarks

We studied the stability of a distributed KF algorithm in this
paper, which can be used to track a time-varying param-
eter vector cooperatively in sensor networks for stochastic
regression models. Here we need no independency, no sta-
tionarity and no Gaussian property for the stability analysis.

Fig. 1 Tracking errors of the six sensors by using a non-cooperative
KF algorithm and b distributed KF algorithm

Fig. 2 Tracking errors of several distributed algorithms

Thus it allows the given theory to be applied to stochas-
tic feedback systems, which lays a theoretical foundation for
future research on some related issues that combine learning,
communication and control. In addition, the stochastic coop-
erative information condition shows the cooperative property
in the sense that even though any sensor cannot track the
parameters due to a lack of necessary excitations, the dis-
tributed KF algorithm can collaboratively accomplish the
tracking task. Some relevant research topics should be con-
sidered, for example, to considermore general systemmodels
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Fig. 3 Tracking errors of distributed KF algorithms on different mea-
surement noises

Fig. 4 Tracking errors of distributed KF algorithms on different param-
eter variations

with random coefficients, to combine distributed estimation
or filtering methods with control problems, and so on.

Data Availability Data sharing is not applicable to this article as no new
data were created or analyzed in this study.
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