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Abstract— This paper considers Stackelberg equilibrium (SE)
and Nash equilibrium (NE) computation in a class of non-
convex network aggregative games with one leader and multiple
followers. The cost function of each follower is influenced by
its strategy, the leader’s strategy, and its neighbors’ aggregative
strategies. Also, the structured non-convex cost function of the
leader is the composition of a canonical function and a vector-
valued geometrical operator that relies on its strategy and
followers’ strategies. In the leader-follower scheme, when the
leader has knowledge of the best responses of the followers in a
closed form, the SE strategy will be the optimal choice due to
its relatively low cost. When the leader does not know the exact
expression of followers’ best responses or the leader’s dominance
is threatened, NE will be what all players are committed to
achieving. The widespread existence of nonconvexity creates
a significant challenge for computing the above equilibria in
different circumstances. The results in existing convex games
are not directly applicable to such a non-convex case, as they
get trapped in local equilibria or stationary points rather than
global equilibria. Here, we adopt the canonical transformation
to reformulate the non-convex games and present the existence
condition based on the canonical duality theory. Then two
projection gradient algorithms are designed to pursue the SE and
the NE, followed by proving the convergence of the algorithms.

Index Terms— Non-convex, leader-follower game, Stackelberg
equilibrium, Nash equilibrium, network aggregative game.

I. INTRODUCTION

MULTI-AGENT systems consisting of multiple interact-
ing intelligent agents are widespread in nature and
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engineering, and have been extensively studied using control,
optimization, and game theory techniques [1], [2], [3], [4].
In recent years, there has been tremendous interest in hierar-
chical decision-making structures in multi-agent systems with
competitive agents. Here, the agents (players) are clustered
into two groups, leaders and followers, depending on their
roles in the game or on the types of their cost functions.
Generally, the leaders commit to their strategies before the
followers react to the strategies made by the leaders. Such
leader-follower games emerge in various fields, such as mobile
blockchain mining [5], unmanned aerial vehicle networks [6],
and smart grids [7]. In particular, when the cost of each player
is influenced by other players only through the aggregation
behavior of their strategies, this framework is known as
network aggregative game, which has a spectrum of practical
applications, including cyber-physical systems [8], demand
response management [9], and wireless cellular networks [10].
Aggregative games can simplify mathematical analysis and
reduce computational complexity, especially for large-scale
systems. Moreover, since aggregative games are characterized
by an individual-aggregate interaction, they fit particularly well
into the framework of one leader and multiple followers.

Under the most general circumstances involving one leader
and multiple followers, the leader chooses a strategy to opti-
mize its cost by taking into account the possible responses of
followers, while followers observe this strategy of the leader
and subsequently respond optimally to it. The corresponding
equilibrium in this paradigm is the celebrated Stackelberg
equilibrium (SE) [11]. Several studies have investigated the
search for SE in leader-follower games. For instance, reference
[12] formulated a Stackelberg game to investigate the secrecy
rate maximization problem and analytically derived the SE.
Reference [13] recast the Stackelberg game as a mathematical
program with complementarity constraints and adopts the
sequential convex approximation to arrive at the local SE
point.

Besides, there are other common scenarios where the leader
is unable to obtain the best responses of the followers,
or the leader’s dominance is threatened by uncertainties in
the environment, errors in transmission in security games, etc
[14], [15], [16], [17], [18]. In view of this point, NE is more
appropriate to characterize the strategic interactions among the
leader and followers. Here, NE refers to the joint strategy that
no player can gain by unilaterally deviating from its current
strategy. Some studies aim to find NE in leader-follower
games. For instance, reference [14] investigated the search
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for the NE when the leader faces uncertainty about the
follower’s surveillance capacity in security games. Reference
[19] designed a distributed subgradient algorithm that achieves
NE in leader-follower games after dealing with followers’
stochastic activeness and communication.

Note that in the existing literature on multi-player games,
the cost functions of players are usually assumed to be
convex, strict convex, or strongly convex (see, e.g., [19],
[20], [21], [22], [23]). In this case, the equilibrium problem
is solvable, and the corresponding analytical and algorithmic
tools are relatively well-established [24]. However, it is worth
mentioning that nonconvexity is common in the equilibrium
problem, which has recently aroused interest in such fields
as market analysis [25], signal processing [26], and machine
learning [27]. Nevertheless, it is challenging for the non-
convex case to reach the SE and NE. On the one hand,
tools that are effective for convex assumptions are not nec-
essarily applicable to the non-convex case. For example, the
classical gradient-based methods for convex games often get
stuck in local equilibria when tracking the pseudo-gradients.
On the other hand, non-convex problems have different struc-
tures and are too complicated to solve within one uniform
framework. Actually, many reformulations and algorithms
were designed and performed to circumvent the difficulties
posed by nonconvexity. Reference [27] introduced a gradient-
based Nikaido-Isoda function and proved error bounds to
a Nash point. Reference [28] presented a gradient-proximal
algorithm for approximate NE within non-convex aggregative
games. Without the guarantee of convexity, [27] and [28]
only reach the so-called local NE instead of the NE. To find
the global minimum, stochastic annealing algorithms were
introduced (see, e.g., [29], [30]), which added the additional
greedy factors in each agent’s update to escape from local
optima in probability. As heuristic algorithms, however, they
lack theoretical analysis and are time-consuming. Therefore,
finding equilibria in a typical class of non-convex games is
still a complex and challenging task that deserves further
research.

The above facts motivate this paper to compute the SE
and NE in a typical class of non-convex network aggregative
games, including one leader and multiple followers. Compared
with the related literature, our contributions are summarized
as follows:

• Existing works [19], [20], [21], [22], [23] revolved around
the equilibrium problem in convex games, while [13],
[27], and [28] dealt with non-convex games and reached
local equilibria or stationary points. To reach equilibrium
in non-convex games, we explore a typical class of
non-convex games where the leader’s cost function is
composited with a canonical function and a vector-valued
geometrical operator. We utilize the canonical duality
theory [31], [32], [33] to deal with the difficulties caused
by nonconvexity and obtain the existence condition.

• In the case where the leader is accessible to follow-
ers’ best response strategies in the closed form, the
leader gives preference to the strategy in the SE point.
We first reformulate the SE computation as an optimiza-
tion problem in the primal-dual framework according to
the canonical duality theory. We then propose a projected
gradient algorithm under a constant step size setting.

Different from [29] and [30], which only give numerical
simulations and lack comprehensive theoretical analysis,
we provide proof of the convergence of our algorithm to
the SE.

• In cases where the leader has no access to the explicit
solution of the best responses of the followers or the
leader loses its dominant position, the players turn to
the search for NE. Compared with works [31], [32]
concentrating on optimization models, we consider the
mutual coupling of the players’ strategies and apply
canonical duality theory to game models. Afterward,
we propose a projected gradient algorithm where the
leader’s strategy is updated only at specific iteration steps
due to the restricted communication between the leader
and the followers. Also, the convergence of our algorithm
to the NE is established.

An outline of this paper is as follows. Section II outlines
some basic preliminaries. Section III gives the problem formu-
lation of this paper to follow up the discussion on how to deal
with the dilemma of choosing SE and NE. The computation
of SE and NE is provided in Section IV and Section V,
respectively. Simulation example is provided in Section VI.
Finally, the concluding remarks are made in Section VII.

II. PRELIMINARIES

In this section, we give some notations and preliminary
knowledge.

A. Notations
Rn represents the set of n-dimensional real vectors. Rm×n

is the set of real matrices with m rows and n columns. Im
stands for the m-dimensional square identity matrix. For a
matrix A ∈ Rm×n , AT denotes the transpose of matrix A. The
notation col{·, · · · , ·} is used to denote the stacked vector or
matrix, and diag(·, · · · , ·) is used to denote a block matrix
formed in a diagonal manner of the corresponding vectors or
matrices. The Kronecker product of two matrices A and B is
denoted by A⊗ B. For two real symmetric matrices X ∈ Rn×n

and Y ∈ Rn×n , X ≻ Y (X ⪰ Y ) means that X −Y is a positive
definite (semi-definite) matrix. �1 × · · · × �N denotes the
Cartesian product of the sets �1, · · · , �N ⊂ Rn .

B. Convex Analysis
A set � ⊂ Rn is convex, if λx1 + (1 − λ)x2 ∈ �,

∀x1, x2 ∈ �, ∀ 0 ≤ λ ≤ 1 holds. Let � ∈ Rn be a nonempty
and convex set, then the mapping P� : Rn

→ � is defined by
P�(x) = arg miny∈� ∥y−x∥

2, where ∥·∥ represents Euclidean
norm. A useful property closely related to the projection
operation is its nonexpansiveness, i.e., ∥P�(x) − P�(y)∥ ≤

∥x − y∥, ∀x, y ∈ Rn . Let � be a convex set and x ∈ �, then
the set defined as follows is called the normal cone of � at x

N�(x) =

{
d | dT (y − x) ≤ 0 for any y ∈ �

}
.

A function f : � ⊂ Rn
→ R is said to be σ -strongly convex

for a given σ > 0, if for any x , y ∈ �,

(∇ f (x) − ∇ f (y))T (x − y) ≥ σ ∥ y − x ∥
2

hold, where ∇ f (·) is the gradient of f and σ is called the
strong convexity parameter. Moreover, let L ≥ 0, the function
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f is said to be L-smooth, if it is differentiable over � and
satisfies

∥ ∇ f (x) − ∇ f (y) ∥≤ L ∥ x − y ∥ for all x, y ∈ �.

Saddle point is a point (x̄, ȳ) ∈ �x × �y s.t. f (x̄, y) ≤

f (x̄, ȳ) ≤ f (x, ȳ), ∀x ∈ �x , ∀y ∈ �y .

C. Canonical Duality Theory

To address the challenges posed by the nonconvexity of cost
functions, the canonical duality theory [31] is introduced.

A differentiable function 8 : 4 → R is said to be a
canonical function on 4, if its gradient ∇8 : 4 → 4∗ is
a one-to-one mapping from 4 to its range 4∗. The canonical
functions include a large class of import functions, for exam-
ple, exponent functions f (x) = ex , strict convex quadratic
functions f (x) =

1
2 xT Ax + bT x + c with A ≻ 0, negative

log functions f (x) = − log(x) [34], [35], [36]. Besides,
if 8 is a convex canonical function, its Legendre conjugate
8∗

: 4∗
→ R can be defined uniquely by the Legendre

transformation

8∗(η) =

{
ξ T η − 8(ξ)|η = ∇8(ξ), ξ ∈ 4

}
,

where η ∈ 4∗ is a canonical dual variable. Then the canonical
duality relations

η = ∇8(ξ) ⇔ ξ = ∇8∗(η) ⇔ 8(ξ) + 8∗(η) = ξ T η (1)

hold on 4 × 4∗, and (ξ, η) is called the Legredre canonical
duality pair on 4 × 4∗.

Next, we review some lemmas needed in the following
sections.

Lemma 1 ( [34]): For a given constant σ > 0, we have
(1) if f : � → R is a 1

σ
-smooth convex function, then f ∗

is σ -strongly convex with respect to the dual norm ∥ · ∥
∗;

(2) if f : � → (−∞, ∞] is a proper closed σ -strongly
convex function, then f ∗

: �∗
→ R is 1

σ
-smooth.

Lemma 2 ( [37]): Let � ̸= ∅ be a closed set. Suppose that
the map F : � ⊂ Rn

→ � is a contraction with constant
L ∈ (0, 1). Then we have the following statements:

(1) The map F has a unique fixed point x⋄ in �.
(2) For any starting point x0

∈ �, x t+1
= F(x t ) generates

a sequence {x t
} converging to x⋄.

(3) For any sequence {x t
} given in (2),

∥x t
− x⋄

∥ ≤
L t

1 − L
∥x0

− F(x0)∥, ∀t ≥ 1.

III. PROBLEM FORMULATION

A. System Model

In this paper, we consider a hierarchical non-cooperative
game with one leader and N followers. Let V ≜ {1, · · · , N }

be the set of followers where each follower i ∈ V has its
strategy (or decision variable) xi ∈ �i ⊂ Rn and �i is
a nonempty convex set. Let x ≜ col{x1, · · · , xN } ∈ � ≜
5N

i=1�i ⊂ RnN be the strategy profile of all followers.
The followers are connected with each other via a weighted
directed graph G(V,A). Here, A =

[
ai j
]

i, j∈V is the weighted
adjacency matrix whose elements satisfy ai j > 0 if there
is a communication link from follower j to follower i and

ai j = 0 otherwise. The neighbors of follower i are denoted
by Ni ≜ { j ∈ V|ai j > 0}. We assume that

∑
j∈V\{i} ai j = 1.

Each follower i attempts to minimize a quadratic cost func-
tion J F

i (xi , σi (x−i ), y) which is affected by its own decision
variable xi , the aggregate behavior of its neighbors σi (x−i ) =∑

j∈Ni
ai j x j with x−i = col{x1, · · · , xi−1, xi+1, · · · , xN },

and also the leader’s decision variable y which is selected
from a convex and compact set denoted by �y ⊂ Rm . The
follower side game is given by

min
xi ∈�i

J F
i (xi , σi (x−i ), y)

= min
xi ∈�i

{
1
2

xi
T Qi xi + (σi (x−i ) + P0i y)T xi

}
, (2)

where Qi ≻ 0 and P0i ∈ Rn×m .
Furthermore, the cost function of the leader is defined as

J L (y, σ0(x)), where σ0(x) =
∑

i∈V a0i xi is the aggregation
term of all followers. Here a0i represents the weight of
communication link between follower i and the leader, and
satisfies

∑
i∈V a0i = 1 and a0i ≥ 0. Denote the leader weight

vector as a0 = (a01, . . . , a0n)T .
This paper focuses on a typical class of non-convex aggrega-

tive game problems in which the leader’s cost function is
well-structured. The leader side game can be expressed as:

min
y∈�y

J L (y, σ0(x)) = min
y∈�y

8(3(y, σ0(x))), (3)

where 3 : Rm
×Rn

→ 4 ⊂ Rp is a vector-valued geometrical
operator such that 3 = (31, . . . , 3p)

T and 3 j : Rm
× Rn

→

R is a quadratic function. 8 : 4 → R is a convex differential
and 1

C -smooth canonical function.
Remark 1: Geometrically speaking, this non-convex struc-

ture may possess a certain symmetry, which usually leads to
more than one global minimizer [31]. Thus, some literature
[31], [32] includes quadratic and linear terms in (3) to break
the tie and facilitate obtaining sufficient conditions for the
existence of the global solution. Without loss of generality,
we do not consider these terms in (3) since they have little
effect on the steps of dealing with nonconvexity based on the
canonical duality theory.

The non-convex cost function (3) has extensive application
in many fields, such as sensor network localization [38], a large
deformation elasticity problem [39], and robust neural network
training [40]. Here, a specific practical example is provided for
intuition about the above non-convex cost function.

Example 1: The log-posynomial function appearing in
resource allocation [35], [36] is listed in the following:

log
(

yT Cy + yT Dσ0(x)
)−1

, (4)

where y represents oligarch’ transmitting resource, σ0(x)

denotes the average transmitting resources of other companies,
and matrices C, D represent the correlation coefficients. This
function fits well with the above non-convex structures when
we set 8 = log(3)−1 and 3 = yT Cy + yT Dσ0(x).

Accordingly, the non-convex network aggregative game
with one leader and multiple followers is defined as
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follows:

Players : followers V and the leader

Strategies :

{
Follower i : xi ∈ �i

Leader : y ∈ �y

Cost :

{
Follower i : J F

i (xi , σi (x−i ), y) (2)

Leader : J L (y, σ0(x)) (3)
.

(5)

B. Stackelberg Equilibrium
In this subsection, we introduce the Stackelberg equilibrium

[11], a fundamental concept for analyzing the leader-follower
scheme. Followers can observe the leader’s actions and adjust
their actions accordingly while the leader considers how
followers will react when making decisions.

Consider the SE of the leader-follower game mentioned
above as long as the leader can obtain the explicit expression
of the optimal set of response strategies. Denote follower i’s
best response strategy set to the leader’s strategy y by

B Ri (x−i , y) = arg min
xi ∈�i

J F
i (xi , σi (x−i ), y) .

In general, the above best response strategy set relies on its
neighbors’ strategies since the followers communicate and
play the non-cooperative game with each other. In the settings
of our paper, the followers’ best response (BR) strategy set to
the leader’s strategy can be compactly represented as,

B R(y) = {x ∈ �|xi ∈ B Ri (x−i , y)} .

Definition 1 (Stackelberg Equilibrium): If there exists a
single-valued map B R(y) : �y → � such that for all i and
for any given y ∈ �y , x−i ∈

∏
m ̸=i �m ,

J F
i (B Ri (x−i , y), σi (x−i ), y) ≤ J F

i (xi , σi (x−i ), y) , ∀xi ∈ �i

and there exists y⋄
∈ �y such that

J L(y⋄, σ0(B R(y⋄))) ≤ J L(y, σ0(B R(y))), ∀y ∈ �y,

then (x⋄, y⋄) ∈ � × �y, with B R(y⋄) = x⋄ is a Stackelberg
Equilibrium point of the leader-follower game between the
followers and leader.

Remark 2: It suffices to search for SE in the case where
the followers’ best response strategy set B R(y) to the leader’s
strategy is supposed to be a single-valued map where followers
have a unique best response to the leader’s strategy. On the
one hand, some simplification is reasonable since SE com-
putation is an inherently ill-posed, non-convex problem. The
uniqueness of equilibrium among followers under the fixed
strategy of the leader is a common assumption to simplify the
analysis for SE, such as [41], [42], and [43]. On the other
hand, results can be readily generalized to the case in which
B R(y) is a multi-valued map by introducing the concepts of
strong Stackelberg Equilibrium or weak Stackelberg Equilib-
rium [11], [44].

C. Nash Equilibrium
In some practical situations, the above leader-follower

scheme may fail when the leader’s dominance is threatened
or the leader has no access to the best responses of followers
[14], [15], [16], [17], [18]. In such cases, there is no longer a

hierarchical decision structure between N + 1 players, and
all players have symmetric roles. Nevertheless, in order to
distinguish the types of cost functions of players, we still retain
the terms “leader” and “follower” as labels. The optimization
problems for these two types of players are listed as (3) and
(2), respectively. Here, the simultaneous-move game model
and the corresponding solution concept Nash equilibrium may
better reflect the actual situation [43]:

Definition 2 (Nash equilibrium): A pair of strategies
(x⋄, y⋄) forms a Nash equilibrium if for all i ∈ V ,

J F
i (x⋄

i , σi (x⋄

−i ), y⋄) ≤ J F
i (xi , σi (x⋄

−i ), y⋄), ∀xi ∈ �i ,

J L(y⋄, σ0(x⋄)) ≤ J L(y, σ0(x⋄)), ∀y ∈ �y . (6)
The above equation (6) means that each strategy in a NE

is the best response to the other players’ strategies in that
equilibrium. Consequently, neither the leader nor the followers
have anything to gain by changing only one’s own strategy.

It is well known that the strategy in SE is more advantageous
than that in NE from the leader’s perspective [11], [43].
Nevertheless, when SE is not unavailable, NE also provides
an acceptable lower bound utility. In both cases, the bumpy
geometric structure of the non-convex problems hinders the
search for the SE and NE. The previous techniques used
for convex games, such as gradient descent algorithms, can
become stuck in local equilibria or stationary points in non-
convex cases since the stationary conditions of the players’
optimization problems are no longer sufficient. In this paper,
we aim to develop algorithms to compute SE and NE instead
of their stationary or local counterparts.

IV. STACKELBERG EQUILIBRIUM COMPUTATION

In this section, we consider the case where the leader
has access to the explicit expressions about followers’ best
responses. The analysis of SE is generally carried out by
the backward induction method to reflect the sequential
dependence of decision-making. Here, the procedure for SE
computation is given as follows:

Step 1. For a fixed leader’s strategy, followers play a
network aggregative game and solve a NE problem, i.e., each
follower i ∈ N finds

B Ri (x−i , y) = arg min
xi ∈�i

J F
i (xi , σi (x−i ), y) ,

for any fixed x−i and y. Then we obtain the followers’ BR
strategy set B R(y) to the leader’s strategy.

Step 2. The leader finds the best strategy y⋄ by solving
the following composite non-convex optimization problem
concerning y based on the canonical duality theory [31]:

y⋄
∈ arg min

y∈�y
J L(y, σ0(B R(y)))

= arg min
y∈�y

8(3(y, (aT
0 ⊗ In)B R(y))). (7)

Step 3. After the global minima y⋄ for (7) is obtained,
followers’ best responses are yielded,

x⋄
= B R(y⋄).

Then (x⋄, y⋄) forms the SE.
Specifically, we focus on a case that the followers’ con-

straint sets �i = Rn , for i ∈ V and the augmented matrix
Q = diag(Q1, . . . , QN ) + A ⊗ In is invertible. By Step 1,
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B Ri (x−i , y) = {xi ∈ Rn
| Qi xi + σi (x−i ) + P0i y = 0} . And

in turn, we obtain the followers’ best response strategy set
to the leader’s strategy B R(y) = −Q−1 Py with P =

col{P01, · · · , P0N }.
Form Step 2, the crucial step of SE computation, we aim

to solve non-convex problem (7) for the leader and obtain
the global solution. For this purpose, we employ canonical
duality theory which enables us to eliminate the duality gap
between the non-convex primal problem and the corresponding
canonical dual problem [31].

We first perform the canonical transformation and derive
a total complementary function to transform the non-convex
game to a complementary dual problem. For convenience,
denote

ξ = 3(y, −(aT
0 ⊗ In)Q−1 Py), (8)

with its range being 41. By (1), we know 8(ξ) = ξ T η −

8∗(η), then the total complementary function defined in the
canonical duality theory is as follows:

51(y, η) ≜ ξ T η − 8∗(η)

= ηT 3(y, −(aT
0 ⊗ In)Q−1 Py) − 8∗(η). (9)

Since 51(·, η) is a quadratic function with respect to variable
y, its Hessian matrix is y-free.

To obtain the global minimum in (7) according to the
canonical duality theory, we introduce the set with respect to
the canonical duality variable η as follows:

S+

1 =

{
η ∈ 41 | ∇

2
y51(y, η) ⪰ k Im

}
,

where the constant k > 0.
Remark 3: From the definition of S+

1 , it is clear that S+

1
is a convex set. By (8), we know ξ should be in a compact
set since y comes from a compact set �y . Then, η should
also be in a compact set because of the continuity property of
∇8. Hence we know S+

1 is a compact set. The nonemptiness
of S+

1 ensures the strong convexity of 51(·, η) with respect
to y, and we denote the strong convexity parameter as C1.
Moreover, since 8(·) is 1

C -smooth convex function, by Lemma
1, we know its conjugate function 8∗(·) is C-strongly convex.
Therefore, −51(y, ·) is C-strongly convex over η.

The following theorem presents the existence of SE for the
non-convex leader-follower game (5).

Theorem 1: If there exists η⋄
∈ S+

1 such that (y⋄, η⋄) is
the stationary point of 51(y, η, σ0(x⋄)) in (9), then y⋄ is the
global minimizer of (7) and (x⋄, y⋄) is the SE of the non-
convex network aggregative game (5).

Proof: Since (y⋄, η⋄) is a stationary point of the total
complementary function (9), then the following first-order
condition holds:

0 ∈ ∇y51(y⋄, η⋄) +N�y (y⋄),

0 ∈ ∇η51(y⋄, η⋄) +N4∗

1
(η⋄).

That is

0 ∈

[
∇y3(y⋄, −(aT

0 ⊗ In)Q−1 Py⋄)
]T

η⋄
+N�y (y⋄), (10)

0 ∈ 3(y⋄, −(aT
0 ⊗ In)Q−1 Py⋄) − ∇8∗(η⋄) +N4∗

1
(η⋄).

(11)

Since ∇8 : 41 → 4∗

1 is a one-to-one mapping from its
domain 41 to its range 4∗

1, (11) can be transformed into

3(y⋄, −(aT
0 ⊗ In)Q−1 Py⋄) = ∇8∗(η⋄). (12)

Using the duality relations (1), we can see that (12) is
equivalent to

η⋄
= ∇8(3(y⋄, −(aT

0 ⊗ In)Q−1 Py⋄)). (13)

By substituting (13) into (10) and using the chain rule of J L ,
we obtain[

∇y3(y⋄, −(aT
0 ⊗ In)Q−1 Py⋄)

]T

× ∇8(3(y⋄, −(aT
0 ⊗ In)Q−1 Py⋄))

=∇y J L(y⋄, σ0(x⋄)) = 0.

Thus, y⋄ is a stationary point of J L .
Due to the convexity of the function 8(·), its Legendre

conjugate 8∗(·) is also convex. Then from (9), we can see
that the total complementarity function 51(y, ·) defined by
(9) is concave with respect to the canonical dual variable η in
�y ×S+

1 . Besides, by the definition of S+

1 , it is clear that S+

1
is a convex set and in relation to the variable y, 51(·, η) is
convex in �y × S+

1 . In this light, we can obtain that (y⋄, η⋄)

is the global optimal point of 51 in �y × S+

1 , i.e.,

51(y⋄, η) ≤ 51(y⋄, η⋄) ≤ 51(y, η⋄), ∀(y, η) ∈ �y × S+

1 .

This confirms that y⋄ is the global mimimum of (7). The
proof is completed. □

Theorem 1 derives a sufficient condition for the SE point.
It reveals that once the stationary point (y⋄, η⋄) of 51(y, η) is
obtained, we can check whether η⋄

∈ S+

1 to identify the SE.
Inspired by this, we attempt to design the projected dynamics
for the leader’s decision variable y and its canonical duality
variable η via the stationary conditions of the total comple-
mentary function, which relies on a underlying assumption on
S+

1 as follows:
Assumption 1: The set S+

1 is nonempty.
Remark 4: Assumption 1 means that these exists a canoni-

cal duality variable which is in 41 and satisfies ∇
2
y51(y, η) ⪰

k Im at the same time. Assumption 1 guarantees that canonical
duality theory is suitable for resolving the non-convex problem,
which was similarly considered in classic optimization works
(see e.g., [32], [45], [46], [47]). Once the game problem is
defined, the set S+

1 can be constructed in an offline fashion.
This computation procedure is actually not so hard in most
practical cases, and we just need to find the intersection of
its domain 4 and the set where the canonical duality variable
satisfies the semi-positive definiteness of the matrix.

For convenience, we denote z = col{y, η}, Z = �y × S+

1 ,
and the following continuous mapping:

F (z) =

[
∇y51(y, η)

−∇η51(y, η)

]
=

[
(∇y3(y, −(aT

0 ⊗ In)Q−1 Py))T η

−3
(
y, −(aT

0 ⊗ In)Q−1 Py
)
+ ∇8∗ (η)

]
≜

[
dy(y, η)

dη(y, η)

]
. (14)
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Algorithm 1
Input: step size τ .
Initialize: y0

∈ �y , η0
∈ S+

1 .
for each time t = 0, 1, 2, · · · do

Leader:
The decision variable:

yt+1
= P�y (yt

− τdy(yt , ηt ));
The canonical dual variable:

ηt+1
= PS+

1
(ηt

− τdη(yt , ηt ));
Followers:

xt+1
= −Q−1 Pyt+1.

end for
Output:

{
xt} ,

{
yt}, t = 1, 2, · · ·

Now, we design an algorithm to search for the SE (see
Algorithm 1).

Owing to the continuity of the gradient of F(z) on the
compact set Z , the operator F(z) is Lipschitz continuous and
the corresponding Lipschitz constant is denoted as L . Then
the convergence result of Algorithm 1 is obtained.

Theorem 2: Suppose that Assumption 1 holds.

(1) If the constant step size τ satisfies τ <
2Cmax

L2 with
Cmax = max(C, C1), then Algorithm 1 converges;

(2) Moreover, if the convergent point (y⋄, η⋄) is the sta-
tionary point of (9), then (x⋄, y⋄) is the SE of the non-convex
network aggregative game (5).

Remark 5: The condition in Theorem 2 (2) is common
in algorithm design based on the canonical duality theory
[32]. A sufficient condition for SE is that the stationary point
(y⋄, η⋄) of 51(y, η) satisfies η⋄

∈ S+

1 . Inspired by this,
we find the point that satisfies the above sufficient condition
by projecting the iteration points onto the closed convex set
S+

1 , which makes the convergence point of the algorithm not
necessarily the stationary point of (9) but may just fall on
the boundary of the set. Hence, we need to verify whether
the convergence point of the algorithm is the stationary point
of (9).

Proof: We first prove that the operator F(z) defined in
(14) is strongly monotone. For any z1, z2 ∈ Z ,

(F(z1) − F(z2))
T (z1 − z2)

=
[
dy(y1, η1) − dy(y2, η2)

]T
(y1 − y2)

+
[
dη(y1, η1) − dη(y2, η2)

]T
(η1 − η2)

=[∇8∗(η1) − ∇8∗(η2)]
T (η1 − η2)

+ ηT
1 (ξ2 − ξ1 + ∇yξ

T
1 (y1 − y2))

+ ηT
2 (ξ1 − ξ2 − ∇yξ

T
2 (y1 − y2))

≥ C∥η1 − η2∥
2
+ C1∥y1 − y2∥

2

≥ Cmax∥z1 − z2∥
2,

where ξi = 3(yi , −(aT
0 ⊗ In)Q−1 Pyi ), i = 1, 2. The

inequality holds since 8∗(·) and ηT 3(y, −(aT
0 ⊗ In)Q−1 Py)

are strong convex with respect to η and y, respectively.
Furthermore, by the Lipschitz continuity of F(z), we have

for any z1, z2 ∈ Z ,

∥PZ (z1 − τ F(z1)) − PZ (z2 − τ F(z2))∥
2

≤ ∥z1 − z2 − τ(F(z1) − F(z2))∥

= ∥z1 − z2∥ + τ 2
∥F(z1) − F(z2)∥

2

− 2τ [F(z1) − F(z2)]
T (z1 − z2)

≤ (1 + τ 2L2
− 2τCmax)∥z1 − z2∥

2.

Therefore by the condition τ <
2Cmax

L2 , we know PZ (z −

τ F(z)) is a contraction map. By Banach fixed-point theorem
(see Lemma 2), for any starting point z0

= col{y0, η0
} ∈

Z , the sequences {yt
} and {ηt

} generated by Algorithm 1
converges to y⋄ and η⋄. Furthermore, from Theorem 1, the
convergence of Algorithm 1 can be obtained. This accom-
plishes the proof. □

V. NASH EQUILIBRIUM COMPUTATION

In Section IV, we have analyzed the Stackelberg Equilib-
rium on the condition that the best responses of the followers
to the leader’s strategy can be expressed in a closed form.
Nevertheless, the leader-follower scheme may sometimes fail
since the leader may not obtain followers’ best responses
or may not maintain its dominant position [14], [15], [16],
[17], [18]. For instance, in security games, intruders who act
as followers occasionally take action directly because of the
high surveillance costs of the defense strategy [17]. Similarly,
attackers (followers) prefer to attack covertly rather than
following the leader-follow scheme to get rid of the defender’s
(leader’s) fault detection [18]. In such cases, the simultaneous-
move game model may be considered an alternative where the
leader and followers have symmetric roles. In other words,
“leader” and “follower” are just two labels to distinguish the
types of cost functions of players.

To consider the NE in this section, we assume that the
strategy sets of followers �i , i ∈ V are compact.

A. The Derivation of NE

In this subsection, based on the canonical duality theory,
we reformulate the NE computation as a complementary dual
problem to explore the existence of NE with the following
steps:

Step 1: We first make a canonical transformation and
introduce the total complementary function 52(y, η, σ0(x⋄)).
Then we consider the relationship between stationary points
of 52(y, η, σ0(x⋄)), J F

i (xi , σi (x−i ), y) and NE point in
Definition 2.

Step 2: A sufficient feasible domain S+

2 regarding the
canonical dual variable is introduced to distinguish the NE
from other stationary points.

Step 3: Existence condition of the NE is provided (see
Theorem 3). The stationary point (x⋄, y⋄) of 52(y, η, σ0(x⋄)),
J F

i (xi , σi (x−i ), y) such that η⋄
∈ S+

2 is the NE.
Following Section IV, we define the following total comple-

mentary function 52(y, η, σ0(x)) in a similar way as shown
in (9) as follows:

52(y, η, σ0(x)) = ξ T η − 8∗(η)

= ηT 3(y, σ0(x)) − 8∗(η), (15)

where ξ = 3(y, σ0(x)) with its range being 42.
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Note that 52(·, η, σ0(x)) is a quadratic function with respect
to variable y, its Hessian matrix is y-free and can be defined
as

G(η, σ0(x)) = ∇
2
y52(y, η, σ0(x))

=

q∑
k=1

[η]k ∇
2
y3k (y, σ0(x))

with [η]k being the k-th entry of the vector η. We also
introduce the following set to prepare for NE computation:

S+

2 =
{
η ∈ 4∗

2 | G(η, σ0(x)) ⪰ kx In
}
, (16)

where the constant kx > 0.
Remark 6: In S+

2 , the positive definiteness of the Hessian
matrix G(η, σ0(x)) is established for any fixed x. Compared to
S+

2 , S+

1 is irrelevant to x (the strategy profile of all followers).
This difference in sets reveals a significant difference between
the SE and NE computation. Specifically, NE computation
remains a variational problem, while SE computation is
transformed into a non-convex optimization problem due to
the definition of the best response set. Although most of the
literature has considered similar non-convex structures in the
framework of optimization [31], [32], it is not straightforward
to transplant techniques in canonical duality theory from
optimization problems to variational problems due to the
mutual coupling of the players’ strategies.

Then we get the following theorem which shows the
relationship between stationary points of 52(y, η, σ0(x⋄)),
J F

i (xi , σi (x−i ), y) and NE point in (6).
Theorem 3: If there exists η⋄

∈ S+

2 such that (y⋄, η⋄)

is the stationary point of 52(y, η, σ0(x⋄)) in (15) and
x⋄

i satisfies the basic first-order optimality condition of
J F

i
(
xi , σi (x⋄

−i ), y⋄
)
, then (x⋄, y⋄) is the NE of the non-convex

network aggregative game (5).
Proof: For a given strategy profile (x⋄, y⋄), if there

exists η⋄
∈ 4∗

2 such that (y⋄, η⋄) is the stationary point
of 52(y, η, σ0(x⋄)), then it satisfies the following first-order
conditions:

0 ∈
[
∇y3(y⋄, σ0(x⋄))

]T
η⋄

+N�y (y⋄).

0 ∈ −3(y⋄, σ0(x⋄)) + ∇8∗(η⋄) +N4∗

2
(η⋄).

Similar to the proof of Theorem 1, we have

0 ∈ ∇y J L(y⋄, σ0(x⋄)) +N�y (y⋄). (17)

Furthermore, by virtue of the first-order optimality condition,
when x⋄

i is the minimizer of the optimization problem

min
xi ∈�i

J F
i
(
xi , σi

(
x⋄

−i
)
, y⋄

)
,

we have

0 ∈ ∇xi J F
i
(
x⋄

i , σi
(
x⋄

−i
)
, y⋄

)
+N�i (x⋄

i ). (18)

Since (18) holds for any i ∈ V , (x⋄, y⋄) satisfies the Nash
stationary condition.

Moreover, when η ∈ S+

2 , it is clear that 52(·, η, σ0(x)) is
convex with respect to y. Since the conjugate function 8∗(·)

is convex, then 52(y, ·, σ0(x)) is concave on η. In this light,
we can obtain the globally optimality of (y⋄, η⋄) on �y ×S+

2 .

52(y⋄, η, σ0(x⋄))≤52(y⋄, η⋄, σ0(x⋄))≤52(y, η⋄, σ0(x⋄)).

The inequality relation above tells us that given σ0(x⋄),

J L(y⋄, σ0(x⋄)) ≤ J L(y, σ0(x⋄)), ∀y ∈ �y .

This confirms that (x⋄, y⋄) is the NE of (5), which completes
the proof. □

Theorem 3 provides a possible method to compute the NE of
the non-convex network aggregative game (5). However, it is
usually tricky to obtain the explicit solution because of the
complicated mutual coupling of stationary conditions. Thus,
we will design a projected gradient algorithm in the following
to allow the leader and followers to learn their optimal strategy
simultaneously.

B. Algorithm Design
For the description of the algorithm, let’s define some

notations:

gy(y, η, σ0(x)) ≜ ∇y52 (y, η, σ0 (x))

=
[
∇y3 (y, σ0(x))

]T
η,

gη(y, η, σ0(x)) ≜ −∇η52 (y, η, σ0 (x))

= −3 (y, σ0(x)) + ∇8∗ (η) ,

gi (xi , σi (x−i ), y) ≜ ∇xi J F
i (xi , σi (x−i ) , y) .

In view of the continuity of gradient of gi (xi , ·, ·) on compact
sets �y and �σi ≜

{
σi (x−i ) | x−i ∈

∏
m ̸=i �m

}
, ∀i ∈ V ,

there exists Lipschitz constant L such that for all i ∈ V ,
σi1, σi2 ∈ �σi , we have

∥ gi (xi , σi1, y1) − gi (xi , σi2, y2) ∥≤ L ∥ σi1 − σi2 ∥

+ L ∥ y1 − y2 ∥, ∀xi ∈ �i , y1, y2 ∈ �y . (19)

Similarly, for any y1, y2 ∈ �y , η1, η2 ∈ 4∗

2, σ01, σ02 ∈ �σ0 ≜
{σ0(x)|x ∈ �}, there exists Lipschitz constant L0 and L1 such
that

∥gy(y, η1, σ01) − gy(y, η2, σ02)∥ ≤ L0∥η1 − η2∥

+L0∥σ01 − σ02∥, (20)
∥gη(y1, η, σ01) − gη(y2, η, σ02)∥ ≤ L1∥y1 − y2∥

+L1∥σ01 − σ02∥. (21)

Here, assume that the leader does not update its strategy at
each iteration but in a given set T L ≜ {t L

j }
∞

j=0. Specifically,
at iteration t ∈ T L , the leader computes its new strategy by
taking a gradient step and then a projection to �y , based on its
previous strategy, the previous aggregate term of all followers’
strategies, and the previous canonical dual variable.

yt+1
=

{
P�y

(
yt

− β t gy(yt , ηt , σ0(xt ))
)
, t ∈ T L

yt , t /∈ T L (22)

Similarly, canonical dual variable also utilizes the projected
gradient method in the same iteration as the leader’s decision
variable.

ηt+1
=

{
PS+

2

(
ηt

− γ t gη(yt , ηt , σ0(xt ))
)
, t ∈ T L

ηt , t /∈ T L

(23)

To lower the communication cost, followers run multiple
projected gradient steps to play network aggregative games
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until they receive a new update of the leader’s decision
variable.

x t+1
i = P�i

(
x t

i − αt
i gi (x t

i , σi (xt
−i ), yt )

)
, ∀i. (24)

Therefore, we get the following Algorithm 2.

Algorithm 2
Input: step sizes β t , γ t , αt

i , ∀i ∈ V .
Intialize: y0

∈ �y , η0
∈ S+

2 , x0
i ∈ �i for ∀i ∈ V .

for each time t = 0, 1, 2, · · · do
Leader:

If t ∈ T L

The decision variable:
yt+1

= P�y (yt
− β t gy(yt , ηt , σ0(xt )));

The canonical dual variable:
ηt+1

= PS+

2

(
ηt

− γ t gη(yt , ηt , σ0(xt ))
)
;

end if
Follower i ∈ V:

x t+1
i = P�i

(
x t

i − αt
i gi (x t

i , σi (xt
−i ), yt )

)
.

end for
Output:

{
x t

i
}N

i=1 ,
{

yt}, t = 1, 2, · · ·

Remark 7: We design the Algorithm 2 under a centralized
framework. We acknowledge that the distributed algorithm has
advantages over our centralized framework by eliminating
requirements such as a central node for information broad-
casting and full observation of players’ strategies. Inspired
by the literature review on distributed aggregative games in
[48] and the distributed structure where the gossip-based
communication protocol can be encountered as a special
case in [19], it will be interesting to explore our framework
under the distributed framework. However, introducing dis-
tributed frameworks has created challenges and difficulties in
terms of communication and information exchange, consensus
and convergence. Specifically, how to solve the problem of
adding communication and convergence among agents without
destroying the structure of the complementary function will be
the focus of our following work.

Next, we will establish the convergence of Algorithm 2
to the NE within the non-convex network aggregative
game (5).

C. Convergence Analysis

For further analysis, we introduce some assumptions.
Assumption 2: The set S+

2 defined in (16) is nonempty.
Remark 8: Similar to Remark 3, the nonemptiness of S+

2
ensures the strong convexity of 52(·, η, σ0(x)) with respect
to y, and we denote the strong convexity parameter as
C2. By Remark 3, we also know that −52(y, ·, σ0(x)) is
C-strongly convex over η. Assumption 2 are proposed to
ensure the existence of the NE point.

Assumption 3: There exists a constant T̄ < ∞ such that
t L

j+1 − t L
j ≤ T̄ for any j ∈ N.

Assumption 4: Let β t , γ t , and αt
i , ∀i ∈ V are nonincreas-

ing, then
∑

∞

t=0 αt
i = ∞, and

∑
∞

t=0(α
t
i )

2 < ∞;
∑

∞

t=0 β t
= ∞,

and
∑

∞

t=0(β
t )2 < ∞;

∑
∞

t=0 γ t
= ∞, and

∑
∞

t=0(γ
t )2 < ∞.

Assumption 5: There exists κ such that µt
max ≤ κµt

min,
where µt

max = max(αt
1, . . . , α

t
N , β t , γ t ) and µt

min =

min(αt
1, . . . , α

t
N , β t , γ t ).

Remark 9: Assumption 3 is about the iteration, which
shows that with no more than T̄ iterations, the leader’s
strategy and its dual variable will be updated. Assumption 4
reveals that step sizes are diminishing, which is commonly
used in the existing literature (see e.g., [49], [50]). As for
Assumption 5, it intuitively illustrates that the gap in step sizes
among players is not large (cf., [19]).

Lemma 3 ( [51]): Let U (k), ξ(k), and ϕ(k) be determinis-
tic nonnegative sequences such that

U (k + 1) ≤ U (k) + ξ(k) − ϕ(k),

with
∑

∞

k=0 ξ(k) < ∞. Then the sequence U (t) converges and∑
∞

k=0 ϕ(k) < ∞.
Since Qi ≻ 0, J F

i (xi , σi (x−i ), y) is strong convex over �i
with respect to xi and strong convexity parameter is denoted
as C ′

i . Based on this, the convergence of Algorithm 1 is given
by the following result.

Theorem 4: Suppose that Assumptions 2-5 hold.
(1) If the strong convex parameters C ′

i , C2 and C sat-
isfy C ′

i > κ L̄ and min(C2, C) > κ T̄ L̄, where L̄ =

max(2L , 2L0, 2L1) with L , L0, L1 defined in (19)-(21), then
Algorithm 2 converges to a fixed point (x⋄, y⋄, η⋄);

(2) Moreover, if (y⋄, η⋄) in the convergent point is the
stationary point of 52(y, η, σ0(x⋄)) in (15), then (x⋄, y⋄) is
the NE point of the non-convex network aggregative game (5).

Proof: We first prove that Algorithm 2
converges to the point (x⋄, y⋄, η⋄) satisfying x⋄

i =

P�i

(
x⋄

i − αt
i gi (x⋄

i , σ ⋄

i , y⋄)
)
, where σ ⋄

i = σi (x⋄

−i ). Let
us introduce the notation 1x t

i = x t
i − x⋄

i , 1yt
= yt

− y⋄

and 1ηt
= ηt

− η⋄. Since the projection operator P�i (·) is
nonexpansive, we have∥∥∥1x t+1

i

∥∥∥2
≤
∥∥1x t

i − αt
i
(
gi (x t

i , σ
t
i , yt ) − gi (x⋄

i , σ ⋄

i , y⋄)
)∥∥2

≤
∥∥1x t

i

∥∥2
+ 4A2

i
(
αt

i
)2

− 2αt
i 9

t
i , (25)

where 9 t
i =

(
gi (x t

i , σ
t
i , yt ) − gi (x⋄

i , σ ⋄

i , y⋄)
)T

1x t
i ,

∥ gi (x t
i , σ

t
i , yt ) ∥≤ Ai , and σ t

i = σi (xt
−i ).

Denote 1ct
= col{1yt , 1ηt

}. Considering the leader’s and
canonical dual variable’s strategy at iteration t L

j , and following
the same operation as (25), we have

∥∥∥1ct L
j +1

∥∥∥2
=

∥∥∥∥∥
[

1yt L
j +1

1ηt j +1

]∥∥∥∥∥
2

≤

∥∥∥1yt L
j

∥∥∥2
+ 4A2

y

(
β

t L
j
)2

− 2β
t L

j 9
t L

j
y

+

∥∥∥1η
t L

j

∥∥∥2
+ 4A2

η

(
γ

t L
j
)2

− 2γ
t L

j 9
t L

j
η , (26)

where 9 t
y =

(
gy(yt , σ t

0, η
t ) − gy(y⋄, σ ⋄

0 , η⋄)
)T

1yt and
9 t

η =
(
gη(yt , σ t

0, η
t ) − gη(y⋄, σ ⋄

0 , η⋄)
)T

1ηt , σ t
0 = σ0(xt ),

∥ gy(yt , σ t
0, η

t ) ∥≤ Ay , ∥ gη(yt , σ t
0, η

t ) ∥≤ Aη.
Now, let us introduce

6 j
=

∥∥∥1ct L
j−1+1

∥∥∥2
+

∑
i∈V

∥∥∥∥1x
t L

j−1+1
i

∥∥∥∥2

.
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Therefore, using inequalities (25) and (26) for t =

t L
j−1, · · · , t L

j , we have

6 j+1
≤6 j

+ 4A2
y

(
β

t L
j
)2

− 2β
t L

j 9
t L

j
y

+ 4A2
η

(
γ

t L
j
)2

− 2γ
t L

j 9
t L

j
η

+ 4
∑
i∈V

A2
i

∑
t ′∈T ′

j

(
αt ′

i

)2
− 2

∑
i∈V

∑
t ′∈T ′

j

αt ′
i 9 t ′

i , (27)

where T ′

j =

{
t L

j−1 + 1, . . . , t L
j

}
. Based on the definition of

9 t ′
i and adding and subtracting the term gi

(
x⋄

i , σ t ′
i , yt ′

)
,

we obtain

9 t ′
i =

(
gi

(
x t ′

i , σ t ′
i , yt ′

)
− gi

(
x⋄

i , σ t ′
i , yt ′

))T
1x t ′

i

+

(
gi

(
x⋄

i , σ t ′
i , yt ′

)
− gi

(
x⋄

i , σ ⋄

i , y⋄
))T

1x t ′
i . (28)

By (19), we have

−αt ′
i 9 t ′

i ≤ −αt ′
i C ′

i

∥∥∥1x t ′
i

∥∥∥2

+ αt ′
i L

(∥∥∥1yt ′
∥∥∥+

∥∥∥σ t ′
i − σ ⋄

i

∥∥∥) ∥∥∥1x t ′
i

∥∥∥
≤ −µt ′

minC ′

i

∥∥∥1x t ′
i

∥∥∥2

+ κµt ′
minL

∥∥∥1x t ′
i

∥∥∥ ·

∥∥∥1yt ′
∥∥∥+

∑
j∈Ni

ai j

∥∥∥1x t ′
j

∥∥∥
 .

(29)

Recall that concerning the variable y, 52(·, η, σ0(x)) exhibits
strongly convexity over �y when η ∈ S+

2 and the relation in
(20). We shall adopt the same procedure as (29) and arrive at:

− β
t L

j 9
t L

j
y

≤ −β
t L

j C2

∥∥∥1yt L
j

∥∥∥2

+ β
t L

j

(
L1

∥∥∥1η
t L

j

∥∥∥+ L0

∥∥∥∥σ t L
j

0 − σ ⋄

0

∥∥∥∥)∥∥∥1yt L
j

∥∥∥
≤ −µ

t L
j

minC2

∥∥∥1yt L
j

∥∥∥2

+ κµ
t L

j
minL0

∥∥∥1yt L
j

∥∥∥ ·

(∥∥∥1η
t L

j

∥∥∥+

∑
i∈V

a0i

∥∥∥∥1x
t L

j
i

∥∥∥∥
)

. (30)

By following the same procedure as (29) and (30), for the
canonical dual variable η, we have

− γ
t L

j 9
t L

j
η

≤ −γ
t L

j C
∥∥∥1η

t L
j

∥∥∥2

+ γ
t L

j L1

(∥∥∥1yt L
j

∥∥∥+

∥∥∥∥σ t L
j

0 − σ ⋄

0

∥∥∥∥)∥∥∥1η
t L

j

∥∥∥
≤ −µ

t L
j

minC
∥∥∥1η

t L
j

∥∥∥2

+ κµ
t L

j
minL1

∥∥∥1η
t L

j

∥∥∥ ·

(∥∥∥1yt L
j

∥∥∥+

∑
i∈V

a0i

∥∥∥∥1x
t L

j
i

∥∥∥∥
)

. (31)

Therefore, substituting inequalities (29), (30) and (31) into
(27), it can be concluded that

− β
t L

j 9
t L

j
y − γ

t L
j 9

t L
j

η −

∑
i∈V

∑
t ′∈T ′

j

αt ′
i 9 t ′

i

≤ −µ
t L

j
minC2

∥∥∥1yt L
j

∥∥∥2
− µ

t L
j

minC
∥∥∥1η

t L
j

∥∥∥2

−

∑
i∈V

∑
t ′∈T ′

j

µt ′
minC ′

i

∥∥∥1x t ′
i

∥∥∥2
+ κ

∑
t ′∈T ′

j

µt ′
minzt ′ TZ t ′ zt ′ , (32)

where zt ′
= col

{∥∥∥1x t ′
1

∥∥∥ , . . . ,

∥∥∥1x t ′
N

∥∥∥ ,

∥∥∥1yt ′
∥∥∥ ,

∥∥∥1ηt ′
∥∥∥},

Z t ′
=



 LA L1N 0
L0aT

0 0 L0

L1aT
0 L1 0

 , t ′ ∈ T L

 LA L1N 0
0T

N 0 0
0T

N 0 0

 , t ′ /∈ T L .

(33)

Here, 1N represents the N -dimensional column vector of unit
entries. An apparent induction gives that the row sum of each
row in the matrices can be 2L , 2L0, or 2L1. Consequently,
according to Perron-Frobenius Theorem [52], ∥ Z t ′

∥≤

max(2L , 2L0, 2L1) = L̄ for t ′ ∈ T L and ∥ Z t ′
∥≤ 2L for

t ′ /∈ T L , respectively.
Hence, zt ′ TZ t ′ zt ′

≤ L̄ ∥ zt ′
∥

2 for any t ′ ≥ 0. Therefore,∑
t ′∈T ′

j

µt ′
minzt ′ TZ t ′ zt ′

≤

∑
t ′∈T ′

j

µt ′
min L̄

(∑
i∈V

∥∥∥1x t ′
i

∥∥∥2
)

+ µ
t L

j
min

(
t L

j − t L
j−1

)
L̄
(∥∥∥1yt L

j

∥∥∥2
+

∥∥∥1η
t L

j

∥∥∥2
)

, (34)

where the last term of (34) is rearranged. Since the leader
and the canonical dual variable only update their variables at
t L

j ∈ T L . Thus, the terms
∥∥∥1yt L

j

∥∥∥ and
∥∥∥1η

t L
j

∥∥∥ are the same

from iteration t L
j−1 ∈ T L to t L

j ∈ T L . By substituting (32)
and (34) into (27), it can be concluded that

6 j+1

≤ 6 j
+ 4A2

y

(
β

t L
j
)2

+ 4A2
η

(
γ

t L
j
)2

+

∑
i∈V

4A2
i

∑
t ′∈T ′

j

(
αt ′

i

)2

− 2µ
t L

j
min

(
C2 − κ

(
t L

j − t L
j−1

)
L̄
) ∥∥∥1yt L

j

∥∥∥2

− 2µ
t L

j
min

(
C − κ

(
t L

j − t L
j−1

)
L̄
) ∥∥∥1η

t L
j

∥∥∥2

− 2
∑
i∈V

∑
t ′∈T ′

j

µt ′
min(C

′

i − κ L̄)

∥∥∥1x t ′
i

∥∥∥2

≜ 6 j
+ I j

1 + I j
2 + I j

3 − I j
4 − I j

5 − I j
6 .

Based on Assumption 4,
∑

∞

j=0 I j
1 + I j

2 + I j
3 is bounded.

According to Assumption 3, C2 − κ
(

t L
j − t L

j−1

)
L̄ ≥ C2 −

κ T̄ L̄ > 0, C −κ
(

t L
j − t L

j−1

)
L̄ ≥ C −κ T̄ L̄ > 0, C ′

i −κ L̄ > 0.

Therefore, I j
4 , I j

5 , and I j
6 are positive. Now, the conditions of

Lemma 3 are satisfied, and consequently,
∑

∞

j=0 I j
4 + I j

5 + I j
6 <
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Fig. 1. The composite optimization function.

∞ converges. Due to the positiveness of I j
4 , I j

5 , and I j
6 ,∑

∞

j=0 I j
4 < ∞,

∑
∞

j=0 I j
5 < ∞, and

∑
∞

j=0 I j
6 < ∞ are

concluded. Therefore, based on
∑

∞

t=0 µt
min ≥

1
κ

∑
∞

t=0 µt
max =

∞, both ∥ 1x t ′
i ∥, ∥ 1η

t L
j ∥ and ∥ 1yt L

i ∥ converge to 0. Thus,
x t

i and yt converge to x⋄

i and y⋄. Furthermore, by Theorem 3,
Algorithm 2 converges to the NE. □

VI. SIMULATION

In this section, we provide an example of sensor network
localization tasks (cf., [32]) to illustrate the performance of
our proposed algorithms in this paper (i.e., Algorithm 1 and
Algorithm 2).

In a sensor network, multiple sensors (followers) V =

{1, · · · , 5} are connected to the aggregator (leader). Let us
define xi ∈ R and y ∈ [−2, 2] as the locations of the i-th
follower and the leader, i.e., the strategies of the i-th follower
and the leader, respectively. The cost of every follower i ∈ V
is set to (2), where Qi = i > 0, P0i = 1, which represents the
energy of the follower. The followers are connected through

a weighted directed graph with A =


0 3

4 0 0 1
4

0 0 0 1
8

7
8

2
3

1
3 0 0 0

2
5 0 3

5 0 0
0 0 1 0 0

.

On the other hand, the distance between the leader and the
average location of all followers is given by d = 2. The leader
aims to finding its location such that ∥y −σ0(x)∥2

= d . When
the measurement contains noise, the leader’s cost function can
be formulated as

J L(y, σ0(x)) =
1
2
(
1
2
∥y − σ0(x)∥2

− d)2
−

1
2
(y − σ0(x))T .

Here, the last term is a deviation term to guarantee the
uniqueness of equilibrium, similar to the treatment in [31] and
[32]. This term does not affect the nonconvexity.

(1) We first compute the SE point by Algorithm 1 since it is
clear that the augmented matrix Q is invertible and then fol-
lowers’ best response strategies set to the aggregator’s strategy
is obtained as B R(y) = −Q−1 Py with P = [1, 1, 1, 1, 1]

T .
Following the procedure presented in Section IV, Fig.1 plots
the composite optimization function (7), which is non-convex
with the local minimum y = −1.42 and the global minimum
y⋄

= 1.62. Then we get the total complementarity function

Fig. 2. Convergence results with different initial points by Algorithm 1.

Fig. 3. Convergence of players’ strategies to the NE by Algorithm 2.

for this non-convex optimization problem as follows

51(y, η) =
1
2
∥zy∥

2η −
1
2
η2

− dη −
1
2
(zy)T ,

where z = 1 + (aT
0 ⊗ In)Q−1 P .

We take S+

1 = {η ∈ [−2, 1.42] | η ≥ 0.1} = [0.1, 1.42]

and set the constant step size as τ = 0.1. Fig. 2 draws
the trajectories of the decision variable of the leader by
starting from the different initial points, from which we
can see that even though the initial values are in the local
neighborhood of the local minimum, the sequence {yt

} is
within their local constraint sets and converges to the global
minimum y⋄

= 1.617. Then, by Step 3, we compute x⋄
=

col{−1.04, −0.67, −0.23, −0.26, −0.28}. At last, the players
arrive at the SE point (x⋄, y⋄).

(2) However, the loss of the aggregator’s leader position may
occur in certain scenarios such as when the aggregator (leader)
may incur observation errors. Here, NE will be what all players
are committed to achieving. We then compute the NE point by
Algorithm 2. For each follower i , let the location constraint
set �i = [−1, 1]. Here, we assume that the leader makes
the decision once every ten iterations. In Fig. 3, we plot the
trajectories of the leader’s strategy yt and followers’ strategies
xt with initial values x0

= [0, −1, 1, 0, 1]
T and y0

= −0.3.
It is clear that the strategies of the leader and followers satisfy
their local set constraints and converge to the NE (x⋄, y⋄) =

col{−1, −0.67, −0.24, −0.27, −0.28, 1.62}.
In addition, we compare Algorithm 2 with the projected

gradient descent (PGD) method [21]. Fig. 4 shows the per-
formance of two algorithms starting from the initial point
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Fig. 4. Performance of different algorithms for NE computation.

y0
= 0 far from the local NE (the upper one) and the

initial point y0
= −0.3 close to the local NE (the lower

one). It indicates that the PGD may get trapped in the local
NE, while our algorithm always converges to the NE in the
non-convex case irrespective of its initial value, which again
illustrates the effectiveness of our algorithm.

VII. CONCLUDING REMARKS

This paper investigated the SE and NE computation in the
non-convex network aggregative game with one leader and
multiple followers, where the cost functions of the leader
and followers are non-convex and strongly convex-quadratic,
respectively. By virtue of canonical duality theory, discrete
projected gradient algorithms are proposed, and the con-
vergence to the global equilibria of the non-convex game
is proved. Many intriguing questions are worthy of further
investigation. For example, as for algorithm design, distributed
protocols can be explored if privacy and security are taken
into account. In terms of the game setup, our formulation is
based on a static game. Dynamic games can also be studied
in a non-convex setting, considering the complex application
context. Moreover, searching for equilibria in general non-
convex games is still an open problem due to the diversity
of non-convex structures.
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