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Abstract—This article investigates the distributed estimation
problem of an unknown high-dimensional sparse state vector
for a stochastic dynamic system. The communication topology
randomly switches, and the switching law is governed by a time-
homogeneous Markovian chain. By means of the compressed
sensing (CS) theory and a diffusion strategy, we propose a
compressed distributed Kalman filter (CDKF). That is, each
sensor first compresses the original high-dimensional regression
data. Then, the covariance intersection fusion rule is utilized
to obtain a distributed Kalman filter (DKF) estimate in the
compressed low-dimensional space. Afterward, the original high-
dimensional sparse state vector can be well recovered by a
reconstruction technique. In terms of stability analysis, one of the
main difficulties lies in analyzing the product of nonindependent
and nonstationary random matrices in the context of time-
varying communication topologies. Relying on the stochastic
stability theory, the Markov chain theory, and the CS theory,
we establish the upper bound for the estimation error under
the compressed cooperative excitation condition, which is much
weaker than the traditional uncompressed collective observability
conditions used in the existing literature. Finally, we provide a
simulation example to illustrate the performance of the proposed
algorithm.

Index Terms—Compressed sensing (CS), distributed Kalman
filter (DKF), Markovian switching topology, sparse state
estimation, stochastic dynamic system.

I. INTRODUCTION

SENSOR networks are comprised of numerous spatially
dispersed sensor nodes, which can share local information
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with neighbors to collaborate on complicated tasks. As one of
these essential tasks, distributed state estimation over sensor
networks has aroused extensive research interest in many
areas, including spacecraft navigation, environmental monitor-
ing, and so on. In the absence of a fusion center, distributed
estimation algorithms have advantages over centralized ones
in terms of robustness and scalability [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Among
them, most results are obtained over static and undirected
networks. In reality, however, communication topologies may
exhibit randomly switching or asymmetric properties due to
link failures or reconstruction and sensor heterogeneity [16].
In [17] and [18], the randomly switching process is modeled
as an independent and identically distributed (i.i.d.) process.
However, it is common for randomly switching topologies
to exhibit temporal correlation [19]. Consequently, some
studies on distributed algorithms over sensor networks have
modeled communication topologies as Markovian switching
topologies to capture this correlation [19], [20], [21], [22]. For
example, [20], [21], [22] investigated distributed estimation
algorithms for deterministic or temporally independent obser-
vation matrices over sensor networks subject to Markovian
switching topologies.

In many cases, the unknown state vectors to be estimated
can be sparse, such as speech signals, image signals, solar
waves, and so on [23], [24], [25], [26]. Given the prevalence
of sparsity, efforts have been made to utilize sparsity as a
prior to improve the estimation performance. One approach for
sparse state estimation involves incorporating a regularization
term into the cost function. For instance, Liu et al. [26]
utilized �0- or �1-norm as the sparsity penalties and presented
a recursive least squares-based distributed adaptive filter by
assuming that observation matrices are i.i.d.. Similarly, Gan
and Liu [27] proposed a distributed sparse identification
algorithm by incorporating a �1-regularization term into the
�2-estimation error. We remark that the literature mentioned
above is concerned with the sparsity of unknown state vectors.
Nevertheless, the sparsity of regression vectors also deserves
attention.

Another approach for estimating sparse signals is the com-
pressed sensing (CS) theory [28]. It facilitates the insufficient
excitation (i.e., the degeneration of covariance matrices of
regression vectors) triggered by the sparsity of the signal. For
example, Xu et al. [29] designed a distributed compressed
estimation algorithm on the basis of the CS technique and
provided a simulation example to illustrate the advantages
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of the proposed algorithm with regard to convergence rate
and mean square error performance. In [30], they presented a
compressed-combine-reconstruct-adaptive algorithm (CCRA)
wherein the CS technique was applied to the diffusion stage.
Then, the stability analysis was conducted under the indepen-
dent assumptions of the regression vectors. We remark that
most of the existing stability analysis for stochastic dynamic
systems critically depends on such stringent assumptions as
independence and stationarity [26], [30], [31], with only a
few exceptions. For instance, Gan and Liu [32] and Xie and
Guo [33] integrated the CS technique into the distributed
least squares algorithm and the distributed normalized least
mean squares algorithm, respectively. After that, the relatively
elegant stability analysis was conducted.

Regarding the Kalman filter, its distributed forms are widely
studied over sensor networks because of its optimality in
the minimum mean square error sense when noise processes
obey a Gaussian distribution. Most distributed Kalman filters
(DKFs) were proposed for deterministic observation matrices
or regression vectors (see, e.g., [3], [4], [5], and [6]). For
example, Sebastián et al. [3] introduced the first event-
triggered and certifiably optimal DKF for deterministic fixed
observation matrices and proved the global asymptotic stability
of the estimator and optimality under positive certification.
In [4], a distributed Kalman-consensus filter was proposed
for the deterministic time-invariant observation matrix, and its
robustness margins were investigated. As for the deterministic
time-varying observation matrices, Ma et al. [5] proposed
a gossip-based DKF and provided a theoretical analysis of
Lyapunov stability and convergence speed. Yang et al. [6]
designed a DKF over delaying sensor networks and derived
sufficient conditions for convergence on estimation errors and
the boundedness of error covariances. It is worth mentioning
that [34] designed a compressed Kalman filter for general
sparse dynamic systems wherein regression vectors were
stochastic. Since it was designed for the single sensor case,
it cannot be directly applied to sensor networks. Besides,
the asymmetric and switching characteristics of communi-
cation topologies make this state estimation problem more
challenging.

In light of the above discussions, this article proposes
a compressed DKF (CDKF) to cooperatively estimate the
sparse state vector. In order to better characterize possible link
failures or reconstructions in actual sensor networks, we model
the communication topologies among sensors as Markovian
switching topologies. As for the theoretical analysis, we estab-
lish the stability of CDKF under the compressed cooperative
excitation condition. The main contributions are summarized
in the following four aspects.

1) The distributed state estimation problem over Markovian
switching topologies is investigated for stochastic
dynamic systems, while the majority of existing liter-
ature focuses on the case where regression vectors are
deterministic [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14].

2) A CDKF is proposed to cooperatively estimate high-
dimensional sparse state vectors by taking advantage of
the CS theory and the diffusion strategy.

3) The upper bound for the estimation error is established
without independent and stationary signal assumptions,
as commonly used in [26], [30], and [31]. Thus, the
stability results of the CDKF are anticipated to be
applicable to stochastic feedback systems.

4) The stability analysis is established under the com-
pressed cooperative excitation condition, which is much
weaker than the uncompressed ones in [3], [9], [10],
and [35]. This suggests that the proposed algorithm may
succeed in the sparse estimation task even if traditional
uncompressed DKFs would fail due to insufficient exci-
tation.

The remainder of this article is arranged as follows. The
problem formulation is presented in Section II, and the main
results are stated in Section III. In Section IV, an illustrative
example is provided to demonstrate the performance of the
algorithm. Finally, concluding remarks are made in Section V.

Notations: For a vector a ∈ R
n, its ith element is denoted

as a(i). The notation ‖a‖�0 represents the number of nonzero
elements in a. A vector a is called s-sparse if it has at most
s nonzero elements (i.e., ‖a‖�0 ≤ s). Additionally, the �1-
norm ‖a‖�1 is defined by ‖a‖�1 = ∑n

i=1 |a(i)|. For two real
symmetric matrices A, B ∈ R

n×n, A > B (A ≥ B) means
that A − B is a positive definite (semi-definite) matrix. The
spectral norm of a matrix A ∈ R

m×n is defined as ‖A‖ =
{λmax(AAT)}(1/2) with λmax(·) being the maximum eigenvalue
of A. The notation (·)T stands for the transpose operator.
Also, λmin(·) denotes the minimum eigenvalue of the matrix,
and the n-dimensional square identity matrix is denoted by
In. We use tr(A) to represent the trace of the corresponding
matrix A. For a random matrix B, its Lp-norm is defined
as ‖B‖p = {E[‖B‖p]}(1/p), p ≥ 1 with E[ · ] being the
expectation operator. Notations E[·|·], P{·}, and P{·|·} describe
the conditional expectation operator, probability measure, and
conditional probability measure, respectively.

II. PROBLEM FORMULATION

A. System Model

In a sensor network of n sensors, the observation model of
each sensor i at time k is described by the following stochastic
regression model:

zk,i = hT
k,ixk + vk,i, k ≥ 0, i = 1, . . . , n (1)

where zk,i ∈ R is the observation, hk,i ∈ R
m is the stochastic

regression vector, vk,i ∈ R is the local observation noise, and
xk ∈ R

m is the time-varying state of interest. The variation of
the unknown state vector xk is described as follows:

xk+1 = xk + ωk+1, k ≥ 0 (2)

where ωk+1 ∈ R
m represents the process noise.

In practical scenarios, such as high-dimensional data classi-
fication and channel estimation [23], [24], [25], [26], sparsity
appears not only in the state xk of interest but also in the
regression vector hk,i. Here, we concentrate on the case where
hk,i and xk are 3s-sparse and s-sparse, respectively (i.e., they
contain at most 3s and s nonzero elements, respectively).
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Remark 1: Compared with the vast majority of research [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14] that focuses on deterministic regression vectors or
observation matrices, here, the regression vector hk,i

is assumed to be stochastic, and thus the regression
model (1) admits feedback control. For instance, if hk,i =
[zk−1,i, . . . , zk−p,i, uk,i, . . . , uk−q,i] with the input signal uk,i

being the control law uk,i = f (zj,i, j ≤ k − 1), then the
regression model (1) can be reduced to the autoregressive
model with exogenous inputs. Note that hk,i composed of
current and past input-output data is stochastic and fails to
meet strict assumptions commonly found in the study of
stochastic dynamic systems, such as i.i.d. condition. This
fact calls for further investigation of assumptions imposed on
regression vectors of stochastic dynamic systems.

Given that the regression vector hk,i is stochastic, we specify
a simpler model (1) and (2) compared to the linear system
model in [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], and [36] regarding the state evolution matrix.
In further work, more general linear time-varying system
models will be considered for broader range of applications.

B. Markovian Switching Topologies

The communication links between sensors are modeled by
a weighted digraph G = (V, E,A), where V = {1, 2, . . . , n}
is the set of nodes, E ⊂ V × V is the set of directed edges,
and A = [aij] ∈ R

n×n is the weighted adjacency matrix. The
ordered pair (i, j) ∈ E if and only if there is a communication
link from node i to node j. The notation Ni = {j ∈ V|(j, i) ∈
E} represents the set of neighbors of the node i and the node
i is also included. All elements in A are non-negative, and
aij > 0 if (i, j) ∈ E , and aij = 0 otherwise. Here, we assume
that A is doubly stochastic (i.e., each row and column sum
to 1). Note that A may be asymmetric. A directed path from
node i1 to i� is an ordered sequence of nodes i1, i2, . . . , i�
such that (it, it+1) ∈ E for t = 1, . . . , � − 1. A digraph is
strongly connected if there is a directed path between any pair
of distinct nodes.

Affected by uncertainties, such as link failures and packet
losses, the communication topology is no longer fixed. Thus,
the communication topology is considered to be stochastically
time-varying, and it can be described by a stochastically
switching digraph, which stochastically switches among s̄ dif-
ferent digraphs G1,G2, . . . ,Gs̄. At time k, the communication
topology is denoted by Gm(k) = (V, Em(k),Am(k)), where the
switching process m(k) is driven by a time-homogeneous
Markov chain taking values on a finite set S = {1, 2, . . . , s̄}.

This article aims to provide a distributed algorithm to
cooperatively estimate the time-varying sparse state vector
over the Markovian switching topology. Moreover, this article
attempts to find relatively mild assumptions to establish upper
bounds on the estimation error.

C. Compressed Distributed Kalman Filter

According to the covariance intersection fusion rule, several
DKFs are proposed to cooperatively estimate the unknown
state vector via local communications and interactions among
sensors [9], [10], [11]. In detail, each sensor generates the

local estimates based on its measurements and then fuses
the estimate among neighbors. Note that our setting is based on
the sparsity of the state vector and the switching characteristics
of communication topologies. Thus, the analysis methods
in the above literature cannot be directly applied. Now, we
propose the CDKF over the Markovian switching directed
topologies, which relies on the CS theory to reduce the
computational cost and improve the estimation performance
in sparse and high-dimensional scenarios (see Algorithm 1).

Specifically, at every time instant k, the compressed regres-
sion vector ϕk,i = Dhk,i ∈ R

d is obtained with the help of a
prespecified sensing matrix D ∈ R

d×m (with d � m.1) For the
generation of the sensing matrix D, please refer to Appendix A
for more details. Then in step 2, we adopt the adapt-then-
combine strategy to update a low-dimensional estimate ζ̂k,i for
the compressed state vector ζk = Dxk ∈ R

d. Note that ζk+1 =
ζk + ω̄k+1, where ω̄k = Dωk. Also, the original model (1) can
be rewritten as follows:

zk,i = hT
k,ixk + vk,i

= ϕT
k,iζk + hT

k,ixk − ϕT
k,iζk + vk,i

= ϕT
k,iζk + hT

k,i

[
Im − DTD

]
xk + vk,i

� ϕT
k,iζk + v̄k,i. (3)

In this case, we regard v̄k,i = hT
k,i[Im − DTD]xk + vk,i

as the new “noise” term. Hence, for the adaptation step,
every sensor performs the Kalman iteration based on the
new “measurements” {zk,i, ϕk,i}i∈V with ri > 0 and � > 0
being arbitrarily chosen. Then, for the combination step,
the diffusion strategy is utilized by exchanging estimates
with neighboring sensors and fusing the collected estimates
through a convex combination. Finally, in step 3, we tackle
convex optimization problem (8) to recover a high-dimensional
estimate {x̂k+1,i}i∈V for the original state vector xk. Here, C̄
represents the bound of the estimation error ‖ζ̃k,i‖.

III. MAIN RESULTS

In this section, we will establish the exponential stability
and the estimation error bound for the proposed CDKF (i.e.,
Algorithm 1) without requiring independent and stationary
assumptions on the system signals. For this purpose, we first
derive the compressed error equation for Algorithm 1.

A. Compressed Error Equation

For the sensor i, introduce the following two compressed
estimation errors: ζ̃k,i = ζk − ζ̂k,i and ζ̌k,i = ζk − ζ̄k,i. Then
from (6) and (7), we have

ζ̃k+1,i = ζk+1 − Pk+1,i

∑

l∈Ni,m(k)

ali,m(k)P̄
−1
k+1,lζ̄k+1,l

= Pk+1,i

∑

l∈Ni,m(k)

ali,m(k)P̄
−1
k+1,lζk+1

− Pk+1,i

∑

l∈Ni,m(k)

ali,m(k)P̄
−1
k+1,lζ̄k+1,l

= Pk+1,i

∑

l∈Ni,m(k)

ali,m(k)P̄
−1
k+1,lζ̌k+1,l. (9)

1The relation d � m means that d is much smaller than m.
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Algorithm 1 CDKF
Input: {hk,i, zk,i}i∈V , k = 0, 1, 2, . . . ; sensing matrix D
Output: {x̂k+1,i}i∈V , k = 0, 1, 2, . . .

for every sensor i ∈ V do
Initialization: Begin with an initial value ζ̂0,i and an

initial positive definite matrix P0,i > 0.
for each time k = 0, 1, 2, . . . do

Step 1. Compression: ϕk,i = Dhk,i.
Step 2. Estimation in a low-dimensional dimension.

i) Adaptation process

Lk,i = Pk,iϕk,i
(
ri + ϕT

k,iPk,iϕk,i
)−1

ζ̄k+1,i = ζ̂k,i + Lk,i

(
zk,i − ϕT

k,iζ̂k,i

)
(4)

P̄k+1,i = Pk,i − Lk,iϕ
T
k,iPk,i + �. (5)

ii) Combination process

P−1
k+1,i =

∑

l∈Ni,m(k)

ali,m(k)P̄
−1
k+1,l (6)

ζ̂k+1,i = Pk+1,i

∑

l∈Ni,m(k)

ali,m(k)P̄
−1
k+1,lζ̄k+1,l. (7)

Step 3. Reconstruction:

x̂k+1,i = arg min
x∈X

‖x‖�1
(8)

where X = {x ∈ R
m|‖Dx − ζ̂k+1,i‖ ≤ C̄}.

From (3) and (4), we can obtain that

ζ̌k+1,i = ζk+1 − ζ̄k+1,i

= ζk + ω̄k+1 − ζ̂k,i − Lk,i

(
zk,i − ϕT

k,iζ̂k,i

)

= ζ̃k,i + ω̄k+1 − Lk,i

(
ϕT

k,iζk − ϕT
k,iζ̂k,i + v̄k,i

)

= (
Id − Lk,iϕ

T
k,i

)
ζ̃k,i − Lk,iv̄k,i + ω̄k+1. (10)

For convenience, the following notations are introduced to
write the above compressed error equation in a compact form:

With notations in Table I, we rewrite (4)–(7) in Algorithm 1
as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�̄k+1 = �̂k + Lk

(
Zk − 	T

k �̂k

)

P̄k+1 = Pk − Lk�
T
k Pk + �̄

vec{P−1
k+1} = A T

m(k)vec{P̄−1
k+1}

�̂k+1 = Pk+1A
T
m(k)P̄

−1
k+1�̄k+1

(11)

where vec{·} stands for the operator which stacks the blocks
of the block diagonal matrix on top of each other. Also, on
account of �̃k = �k − �̂k and �̌k = �k − �̄k, applying (10)
yields that

�̌k+1 = (
Idn − Lk	

T
k

)
�̃k − LkV̄k + 
̄k+1.

Then according to (9), we obtain the compressed error
equation as follows:

�̃k+1 = Pk+1A
T
m(k)P̄

−1
k+1�̌k+1

TABLE I
SOME NOTATIONS

= Pk+1A
T
m(k)P̄

−1
k+1

(
Idn − Lk	

T
k

)
�̃k

− Pk+1A
T
m(k)P̄

−1
k+1LkV̄k

+ Pk+1A
T
m(k)P̄

−1
k+1
̄k+1. (12)

B. Some Definitions

The compressed error equation (12) can be regarded as the
vector random linear equation �k+1 = Ak�k + ρk+1, k ≥ 0
where {Ak, k ≥ 0} is a sequence of dn × dn random matrices.
Roughly speaking, the stability of �k is tied to the stability
of its homogeneous part, that is, �k+1 = Ak�k, which relies
on the product of random matrices. To this end, we introduce
some definitions on the stability of random matrices.

Definition 1 [37]: For a sequence of d × d random matrices
B = {Bk, k ≥ 0}, we say that {I − Bk, k ≥ 0} is Lp-
exponentially stable (p ≥ 1) with parameter τ ∈ [0, 1) if B
belongs to the set

Sp(τ ) =
⎧
⎨

⎩
B :

∥
∥
∥
∥
∥
∥

k∏

t=s+1

(I − Bt)

∥
∥
∥
∥
∥
∥

p

≤ Mτ k−s

∀k ≥ s + 1 ∀s ≥ 0, for some M > 0

⎫
⎬

⎭
.

Definition 2 [37]: For a scalar sequence β = {βk, k ≥ 0},
we define

S0(τ ) =
⎧
⎨

⎩
β : βk ∈ [0, 1],E

⎡

⎣
k∏

t=s+1

(1 − βt)

⎤

⎦ ≤ Mτ k−s

∀k ≥ s + 1 ∀s ≥ 0, for some M > 0

⎫
⎬

⎭

where τ ∈ [0, 1).
As demonstrated in [37] and [38], {I − Ak, k ≥ 0} ∈ Sp(·)

is the sufficient and necessary condition for the stability of
�k in a sense. Verifying whether the random matrix sequence
{I − Ak, k ≥ 0} belongs to the set Sp(·) poses a significant
mathematical challenge, particularly without the assumptions
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of independence and stationarity for the signals. It is worth
noting that for random linear equations arising from adaptive
filtering algorithms, including the Kalman filter algorithm, the
investigation of Sp(·) can be simplified to that of a scalar
sequence in S0(·). This corresponding scalar sequence can
then be studied based on excitation or observability conditions
imposed on the regression vectors [37], [38]. For further
analysis, the lemma on the set S0(·) is introduced as follows.

Lemma 1 [37]: For two scalar sequences ι = {ιk, k ≥ 0}
and ν = {νk, k ≥ 0}:

1) If 0 ≤ ιk ≤ νk ≤ 1 holds for any k ≥ 0, then {ιk} ∈
S0(τ ) implies {νk} ∈ S0(τ ).

2) Let {ιk} ∈ S0(τ ) and ιk ≤ ι∗ < 1 ∀k ≥ 0 where ι∗ is a
constant. Then for any ε ∈ (0, 1), {ειk} ∈ S0(τ (1−ι∗)ε).

3) Let ι = {ιk,Hk} and ν = {νk,Hk} be adapted processes,
such that ιk ∈ [0, 1], E[ιk+1|Hk] ≥ νk, k ≥ 0. Then
{νk} ∈ S0(τ ) implies that {ιk} ∈ S0(

√
τ).

C. Assumptions

For stability analysis, we need the following assumptions:
Assumption 1 [Restricted Isometry Property (RIP)]: The

sensing matrix D ∈ R
d×m satisfies the RIP with order 4s

where the 4s-restricted isometry constant is denoted as δ4s (see
Definition 3).

Assumption 2 (Compressed Cooperative Excitation
Condition): For the adapted sequences {ϕk,i,Fk, k ≥ 0}i∈V ,
there exists an integer h > 0 such that {τk, k ≥ 0} ∈ S0(τ )

for some τ ∈ (0, 1), where τk is defined by

τk � λmin

⎛

⎝E

⎡

⎣ 1

n(1 + h)

n∑

i=1

(k+1)h∑

j=kh+1

ϕj,iϕ
T
j,i

1 + ‖ϕj,i‖2

∣
∣
∣
∣Fkh

⎤

⎦

⎞

⎠

with Fk = σ {hj,i, ωj, vj−1,i, j ≤ k, i ∈ V}.
Remark 2: Essentially, Assumption 2 is a stochastic col-

lective observability condition for the compressed regression
vectors. To clarify, we give some intuitive explanations in
terms of “excitation,” “collective,” and “compressed,” with the
latter two characteristics further illustrated in the simulation
section.

1) Excitation: Assumption 2 says that the smallest eigen-
value τk is not “too small.”

2) Collective: Compared to the excitation condition for
the single case in [34] and [37], Assumption 2 contains
not only temporal union information but also spatial
union information of all the sensors, which implies
that multiple sensors can cooperate to accomplish the
estimation task even if any individual sensor cannot.
Similar collective conditions are commonly exerted on
the deterministic coefficients when studying the stability
of the uncompressed DKF (cf. [3], [9], [10], [35]).

3) Compressed: Compared to collective observability con-
ditions in [3], [9], [10], and [35], Assumption 2
is assumed for the compressed regression vectors
{ϕk,i} rather than the original ones {hk,i}. Therefore,
Assumption 2 is much weaker than that in [3], [9],
[10], and [35], which implies that the CDKF may still
get the compressed estimation results stably even if the
uncompressed DKFs cannot fulfill the estimation tasks.

Assumption 3 (Markovian Switching Network Topology
Assumption): The following assumptions are imposed on the
network topology:

1) The union of all possible digraphs {G1, . . . ,Gs̄} is
strongly connected.

2) The Markov chain {m(k), k ≥ 0} is irrespective to Fk.
It is ergodic with the transition probability matrix P =
[pab] ∈ R

s̄×s̄ where pab = P{m(k + 1) = b|m(k) = a}.
Remark 3: Some remarks on the Markovian graph model

are given below.
1) Roughly speaking, Assumption 3 1) is quite weak in

the sense that it is permissible for the sensor network to
disconnect at any time k.

2) Assuming ergodicity, each state of the Markov chain
can be reached from any other state in the state space
in a positive probability. In other words, there exists an
integer q0 ≥ 0 such that

P{m(k + q0) = b|m(k) = a} > 0 (13)

holds for all k and all states a, b ∈ S.

D. Stability Results

Note that the theoretical analysis is based on the sparsity
in the system model and the switching characteristics of
communication topologies. Therefore, the analysis methods
in [9], [10], [11], [33], and [34] cannot be directly applied.
Now, we list the sketch of stability analysis for Algorithm 1
as follows.

1) In Lemma 2 we derive conditions for the exponential
stability of the homogeneous part of the compressed
error equation (12).

2) In Lemma 4 we investigate the properties of {Pk} based
on Lemma 3, thus verifying the conditions in Lemma 2.

3) According to Lemmas 2 and 4, we obtain the exponential
stability of the homogeneous part of the compressed
error equation (12) in Theorem 1. Also, we establish an
upper bound for the estimation error of the compressed
state vector ζk.

4) Based on Theorem 1 and Lemma 6, we establish the
upper bound for the estimation error of the original state
vector xk in Theorem 2.

5) According to Theorem 2, we derive the estimation error
bound for the original state vector in probability in
Corollary 1.

For Algorithm 1, it is clear that by (11), we have

{
P̄k+1 = (

Idn − Lk	
T
k

)
Pk

(
Idn − Lk	

T
k

)T + RLkLT
k + �̄

vec
{

P−1
k

}
= A T

m(k−1)vec
{

P̄−1
k

} (14)

where P0 > 0. Based on this equation, the following
lemma from [38] outlines conditions for the Lp-exponential
stability of the homogeneous part of the compressed error
equation (12). For simplicity, denote �k � RLkLT

k + �̄ and
R � diag{r1, . . . , rn}⊗Im. The lemma is then stated as follows.
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Lemma 2: For the random recursive equation (14), we have
for all t > s

∥
∥
∥
∥
∥

t−1∏

k=s

Pk+1A
T
m(k)P̄

−1
k+1

(
Idn − Lk	

T
k

)
∥
∥
∥
∥
∥

2

≤
⎧
⎨

⎩

t−1∏

k=s

⎛

⎝1 − 1

1 +
∥
∥
∥�−1

k P̄k+1

∥
∥
∥

⎞

⎠

⎫
⎬

⎭
·
{
‖Pt‖ · ‖P̄−1

s ‖
}
.

Moreover, if {Pk} satisfies the following two assumptions:
1) {1/(1 + ‖�−1

k P̄k+1‖)} ∈ S0(τ ), for some τ ∈ [0, 1) and
2) supt≥s≥0 ‖(‖Pt‖ · ‖P̄−1

s ‖)‖p < ∞, for some p ≥ 1, then we
have

{
Idn − Pk+1A

T
m(k)P̄

−1
k+1

(
Idn − Lk	

T
k

)} ∈ Sp

(
τ 1/2p

)
. (15)

Remark 4: Intuitively, this lemma implies that the investi-
gation of (15) can be simplified to verify whether a certain
scalar sequence belongs to the set S0(·) and whether a certain
process is bounded in the sense of Lp-norm.

Before verifying the two assumptions on {Pk} in Lemma 2,
we first analyze the following properties of {Pk}. For simplicity
of notation, we denote At

k as the matrix representing the prod-
uct of weighted adjacency matrices during the time interval
[k, t], expressed as A m(k)A m(k+1) . . . A m(t). The element in
row i, column j of At

k is denoted as At
k(i, j). Additionally,

we denote �i(ρh′, k − 1) = ∑n
j=1 Ak−1

ρh′ (j, i) Pρh′,j + h′�,
� ′(ρh′) = ∑n

j=1 Pρh′,j+h′�, and zρ = �([ρh′ + ns̄q0]/h)�+1.
The operator �a� rounds a to the nearest integer less than or
equal to a.

Lemma 3: Let {Pk} be generated by (11). Then we have

Tρ+1 ≤ (
1 − bρ+1

)
Tρ + d′

where

Tρ =
(zρ−1+1)h∑

k=zρ−1h+1

tr(Pk+1), T0 = 0

c1
ρ+1 = tr

⎛

⎝
(zρ+1)h∑

k=zρh+1

n∑

j=1

�2
j

(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1 + ∥
∥ϕk,j

∥
∥2

⎞

⎠

c2
ρ+1 =

n∑

j=1

(
rj + 1

) · (1 + λmax
(
� ′(ρh′))) · tr

(
� ′(ρh′))

bρ+1 �
c1
ρ+1

nhc2
ρ+1

d′ = 3

2
nh

(
h′ + 1

)
tr(�)

and h′ = h + ns̄q0 with h, q0 being constants defined in
Assumption 2 and Remark 3, respectively.

The proof of Lemma 3 is listed in Appendix B. Using this
lemma, we verify the two assumptions on {Pk} in Lemma 2
as follows.

Lemma 4: For {Pk} and {P̄k} generated by (11), provided
that Assumptions 2 and 3 are satisfied, then we obtain the
following.

1) There exists a positive constant ε∗ such that for any
ε ∈ [0, ε∗), supk≥0 E[ exp(ε‖Pk‖)] < ∞.

2) For any μ ∈ (0, 1], there exists a constant τ ∈ (0, 1)

such that {μ/(1 + ‖�̄−1‖ · ‖P̄k+1‖)} ∈ S0(τ ).
Proof: We first prove Lemma 4 1): by (13) in Remark 3,

we can see that there exists a positive constant p0 such that
for all ρ

P
{
m(ρ + ns̄q0) = s̄, m(ρ + (ns̄ − 1)q0) = s̄ − 1, . . .

m(ρ + ((n − 1)s̄ + 1)q0) = 1

m(ρ + 2s̄q0) = s̄, m(ρ + (2s̄ − 1)q0) = s̄ − 1, . . .

m(ρ + (s̄ + 1)q0) = 1

m(ρ + s̄q0) = s̄, m(ρ + (s̄ − 1)q0) = s̄ − 1, . . .

m(ρ + q0) = 1
∣
∣m(ρ)

}

= P
{
m(ρ + ns̄q0) = s̄

∣
∣m(ρ + (ns̄ − 1)q0) = s̄ − 1

}
. . .

P
{
m(ρ + ((n − 1)s̄ + 1)q0) = 1

∣
∣m(ρ + ((n − 1)s̄)q0) = s̄

}

. . .P
{
m(ρ + q0) = 1

∣
∣m(ρ)

}

≥ p0 > 0. (16)

By (16), we know that the Markov chain {m(k), k ≥ 0} can
visit all states in S with n times in a positive probability during
the time interval [ρ + q0, ρ + ns̄q0].

We are now in a position to analyze the term E[bρ+1|Fzρh].
By Assumption 3 and [39, Lemma 5.1], we know that for
k ∈ [zρh + 1, (zρ + 1)h], there exists positive constants σ0 and
σ such that the following inequality holds:

E

[
Ak−1

ρh′+1(u, j)|F ′
k

]
= E

[
Ak−1

ρh′+1(u, j)
∣
∣
∣m

(
ρh′)]

≥ σ0E

[
Ak−1

ρh′+q0
(u, j)

∣
∣
∣m

(
ρh′)] ≥ σ, a.s

where F ′
k is a σ -algebra generated by {m(1), . . . , m(ρh′)} and

Fk. Clearly, σ ∈ (0, 1]. Then, by [40], it yields that

E

[
�2

j (k − 1)

∣
∣
∣F ′

k

]

= E

⎡

⎣

(
n∑

l=1

Ak−1
ρh′ (l, j) Pρh′,l + h′�

)2
∣
∣
∣
∣
∣
∣
F ′

k

⎤

⎦

≥
{

E

[
n∑

l=1

Ak−1
ρh′ (l, j) Pρh′,l + h′�

∣
∣
∣
∣
∣
F ′

k

]}2

=
{

n∑

l=1

E

[
Ak−1

ρh′ (l, j)
∣
∣
∣F ′

k

]
Pρh′,l + h′�

}2

≥
(

σ

n∑

l=1

Pρh′,l + h′�
)2

≥ σ 2

(
n∑

l=1

Pρh′,l + h′�
)2

� σ 2(� ′(ρh′)
)2

.

By Fzρh ⊂ Fk and ϕk,j ∈ Fk, we conclude that

E

[

�2
j (k − 1)

ϕk,jϕ
T
k,j

1 + ∥
∥ϕk,j

∥
∥2

∣
∣
∣
∣
∣
F ′

zρh

]

= E

[

E

[
�2

j (k − 1)

∣
∣
∣F ′

k

]
· ϕk,jϕ

T
k,j

1 + ∥
∥ϕk,j

∥
∥2

∣
∣
∣
∣
∣
F ′

zρh

]

≥ σ 2
E

[
(
� ′(ρh′))2 · ϕk,jϕ

T
k,j

1 + ∥
∥ϕk,j

∥
∥2

∣
∣
∣
∣
∣
F ′

zρh

]

.
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From the above analysis, we can obtain that

E

[
bρ+1

∣
∣
∣F ′

zρh

]

≥ σ 2

nhc2
ρ+1

· tr

⎛

⎝
(zρ+1)h∑

k=zρh+1

n∑

j=1

E

[
(
� ′(ρh′))2 ϕk,jϕ

T
k,j

1 + ∥
∥ϕk,j

∥
∥2

∣
∣
∣
∣
∣
F ′

zρh

]⎞

⎠

≥ 1

nhc2
ρ+1

σ 2n(1 + h)τ ′
ρ tr

((
� ′(ρh′))2

)

where

τ ′
ρ = λmin

⎛

⎝E

⎡

⎣ 1

n(1 + h)

n∑

j=1

(zρ+1)h∑

k=zρh+1

ϕk,jϕ
T
k,j

1 + ‖ϕk,j‖2

∣
∣
∣
∣
∣
∣
Fzρh

⎤

⎦

⎞

⎠.

It is clear that Tρ and bρ are F̄zρh-measurable, and

bρ+1 ∈
⎡

⎣0,

(
n∑

i=1

(ri + 1)

)−1
⎤

⎦.

By the inequality tr(B2) ≥ m−1(tr(B))2 with B ∈ R
m×m

being the positive definite matrix, we have

E
[
bρ+1

∣
∣F̄zρh

] ≥ σ 2h′‖�‖τ ′
ρ

d
(∑n

i=1(ri + 1)
)
(1 + h′‖�‖) . (17)

Then by Assumption 2 and applying Lemma 1, an trivial
verification yields that {bρ+1} ∈ S0(χ) for some χ ∈ [0, 1).
Consequently, by the definition of S0(·), we can obtain that

E

[
t∑

k=s

(1 − bk+1)

]

≤ Cχ t−s+1 ∀t ≥ s ≥ 0

for some constants C > 0 and χ ∈ [0, 1). According to
Lemma 3, it is derived that for ∀ε > 0

exp
(
εTρ+1

) ≤ exp
(
(1 − bρ+1)εTρ

) · exp
(
d′ε

)
.

By the following inequality:

exp(βϒ) − 1 ≤ β exp(ϒ), 0 < β < 1, ϒ > 0

we get

exp
(
εTρ+1

) ≤ [(
1 − bρ+1

)
exp

(
εTρ

) + 1
] · exp

(
d′ε

)
.

From this, let ε be sufficiently small to ensure that
exp(d′ε)χ < 1 holds. It yields that

sup
ρ≥0

E
[
exp

(
εTρ

)]
< ∞

which implies that Lemma 4 1) holds.
Now, we prove Lemma 4 2): denote yρ = μ−1[h(1 +

‖�̄−1‖·‖�̄‖) + ‖�̄−1‖Tρ] with Tρ being defined in Lemma 3.
It can be seen that

yρ+1 ≤ (
1 − bρ+1

)
yρ

+ μ−1
[
h
(

1 + ‖�̄−1‖ · ‖�̄‖
)

+ d′‖�̄−1‖
]
.

It is easy to see from (17), Assumption 2 and Lemma 1
2) that [37, Lemma 3.1] is applicable to the above equation.
Hence, we know that {1/yρ} ∈ S0(γ ), for some γ ∈ (0, 1).
Note that

yρ =
(zρ−1+1)h∑

k=zρ−1h+1

μ−1
[
1 +

∥
∥
∥�̄−1

∥
∥
∥ · ‖�̄‖ +

∥
∥
∥�̄−1

∥
∥
∥tr(Pk+1)

]
.

Similar to the proof in Lemma 5 of [41], it follows that:
{

μ
[
1 +

∥
∥
∥�̄−1

∥
∥
∥ · ‖�̄‖ +

∥
∥
∥�̄−1

∥
∥
∥ · tr(Pk)

]−1
}

∈ S0(τ )

holds for some τ ∈ (0, 1). Then we know that
{

μ
[
1 +

∥
∥
∥�̄−1

∥
∥
∥ · ‖�̄‖ +

∥
∥
∥�̄−1

∥
∥
∥ · ‖Pk‖

]−1
}

∈ S0(τ ).

Since (P̄k+1 − �̄)−1 = P−1
k + R−1	k	

T
k , we have P̄k+1 ≤

Pk + �̄, and ‖�̄−1‖ · ‖P̄k+1‖ ≤ ‖�̄−1‖ · ‖Pk‖ + ‖�̄−1‖ · ‖�̄‖.
By this and Lemma 1 1), we can obtain that

{
μ/

(
1 + ‖�̄−1‖ · ‖P̄k+1‖

)}
∈ S0(τ )

holds for some τ ∈ (0, 1), which is the desired conclusion. �
Following Lemma 4, the assumptions on {Pk} in Lemma 2

are satisfied. Furthermore, it is worth mentioning that under
the Markovian switching topologies, the adjacency matrix is
asymmetric and random, which gives rise to new challenges
for the stability analysis. By virtue of stochastic stability
theory, Markov chain theory, and CS theory, we establish
the following stability results over Markovian switching
topologies.

Theorem 1: Consider the system model (1) and (2) and the
compressed error equation (12). Suppose that for some q ≥
(1/2) and for any i ∈ V , supk≥0 ‖ϕk,i‖2q < ∞. Also suppose
that Assumptions 1–3 hold.

1) {Idn − Pk+1A
T
m(k)P̄

−1
k+1(Idn − Lk	

T
k )} is Lp exponentially

stable (p ≥ 1).
2) Given that

σr � sup
k

∥
∥�k logβ(e + �k)

∥
∥

r < ∞

hold for some r ≥ 1, β > 2, where �k =
([3δ4s]/[

√
1 − δ4s])‖Xk‖+‖Vk‖+√

1 + δ4s‖
k+1‖, then
for p = (q−1 + r−1)−1, the compressed estimation error
{�̃k, k ≥ 0} is Lp-stable and

lim sup
k→∞

‖�̃k‖p ≤ C (18)

where C � c[σr logβ(e + σ−1
r )] with c being a positive

constant.
Proof: According to Lemmas 2 and 4, it follows immedi-

ately that for some p ≥ 1 and τ ∈ [0, 1), we have:
{

Idn − Pk+1A
T
m(k)P̄

−1
k+1

(
Idn − Lk	

T
k

)} ∈ Sp

(
τ 1/2p

)
.

Additionally, by the compressed error equation (12), it is
yielded that
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�̃k+1 =
k∏

i=0

Pi+1A
T
m(i)P̄

−1
i+1

(
Idn − Li	

T
i

)
�̃0

+
k∑

i=0

⎡

⎣
k∏

j=i+1

Pj+1A
T
m(j)P̄

−1
j+1

(
Idn − Lj	

T
j

)

· Pi+1A
T
m(i)P̄

−1
i+1 · (−LiV̄i + 
̄i+1

)
⎤

⎦.

Next, by Minkowski inequality, we obtain that

∥
∥
∥�̃k+1

∥
∥
∥

p
≤

∥
∥
∥
∥
∥

k∏

i=0

Pi+1A
T
m(i)P̄

−1
i+1

(
Idn − Li	

T
i

)
�̃0

∥
∥
∥
∥
∥

p

+
k∑

i=0

∥
∥
∥
∥
∥
∥

k∏

j=i+1

Pj+1A
T
m(j)P̄

−1
j+1

(
Idn − Lj	

T
j

)

· Pi+1A
T
m(i)P̄

−1
i+1 · (−LiV̄i + 
̄i+1

)
∥
∥
∥
∥
∥
∥

p

� T1 +
k∑

i=0

T2,i.

In the following, we divide our analysis for T2,i into three
steps:

T2,i ≤
∥
∥
∥
∥
∥
∥

⎛

⎝

∥
∥
∥
∥
∥
∥

k∏

j=i+1

Pj+1A
T
m(j)P̄

−1
j+1

(
Idn − Lj	

T
j

)
∥
∥
∥
∥
∥
∥

·
∥
∥
∥Pi+1A

T
m(i)P̄

−1
i+1

∥
∥
∥ · ∥∥−LiV̄i + 
̄i+1

∥
∥
)∥
∥
∥

p

� ‖(I1 · I2 · I3)‖p. (19)

By (14), we obtain that �k ≥ �̄ and P̄k ≥ �̄. Then,
it follows that ‖P−1

k ‖ ≤ ‖P̄−1
k ‖ ≤ ‖�̄−1‖. According to

Lemma 2, we obtain that for k > i

I1 ≤
⎧
⎨

⎩

k∏

j=i+1

(

1 − 1

1 + ∥
∥�̄−1

∥
∥ · ‖P̄j+1‖

) 1
2

⎫
⎬

⎭

·
{

‖Pk+1‖ 1
2 ·

∥
∥
∥P̄−1

i+1

∥
∥
∥

1
2
}

≤
⎧
⎨

⎩

k∏

j=i+1

(

1 − 1

2
(
1 + ∥

∥�̄−1
∥
∥ · ‖P̄j+1‖

)

)⎫
⎬

⎭

·
{

‖Pk+1‖ 1
2 ·

∥
∥
∥�̄−1

∥
∥
∥

1
2
}

. (20)

The next thing to do is estimate I2. Clearly, A m(i) is a
doubly stochastic matrix and ‖A m(i)‖ = 1, yielding that

I2 ≤ ‖Pi+1‖ · ‖A m(i)‖ ·
∥
∥
∥P̄−1

i+1

∥
∥
∥ ≤ ‖Pi+1‖ ·

∥
∥
∥�̄−1

∥
∥
∥. (21)

It remains to estimate I3 in (19). For simplicity, denote Uk �
col{uk,1, . . . , uk,n} ∈ R

n where uk,i = hT
k,i[Im − DTD]xk. Since

‖hk,i‖�0 ≤ 3s and ‖xk‖�0 ≤ s, we define index sets of nonzero
elements as L3s and Ls, respectively. Without loss of generality,
we use hk,i,4s and xk,4s to denote vectors which are formed

by elements of hk,i and xk indexed by L4s = L3s ∪ Ls. Also,
the notation D4s represents the submatrix which is constructed
by columns of D indexed by L4s. By Assumption 1, any
eigenvalue of DT

4sD4s is in [1 − δ4s, 1 + δ4s]. Hence, it can be
derived that

‖uk,i‖ = ∥
∥hT

k,i

[
Im − DTD

]
xk
∥
∥

= ∥
∥hT

k,i,4s

[
I4s − DT

4sD4s
]
xk,4s

∥
∥

≤ ∥
∥hT

k,i,4s

[
(1 + δ4s)I4s − DT

4sD4s
]
xk,4s

∥
∥ + δ4s‖hk,i,4sxk,4s‖

≤ ‖hk,i,4s‖ · ∥∥[(1 + δ4s)I4s − DT
4sD4s

]∥
∥ · ‖xk,4s‖

+ δ4s‖hk,i,4s‖ · ‖xk,4s‖
≤ 2δ4s‖hk,i,4s‖ · ‖xk,4s‖ + δ4s‖hk,i,4s‖ · ‖xk,4s‖
= 3δ4s‖hk,i‖ · ‖xk‖
≤ 3δ4s√

1 − δ4s

∥
∥ϕk,i

∥
∥ · ‖xk‖

and ‖Uk‖ ≤ ([3δ4s]/[
√

1 − δ4s])‖	k‖ · ‖Xk‖. Notice
that ‖Li‖ ≤ ([‖Pi‖(1/2)]/[2

√
rmin]), where rmin =

mini∈V {r1, . . . , rn} and thus, we have

I3 ≤ ‖Li‖ · (‖Ui‖ + ‖Vi‖) + ‖
̄i+1‖
≤ ‖Pi‖ 1

2

2
√

rmin

(
3δ4s√
1 − δ4s

‖	i‖ · ‖Xi‖ + ‖Vi‖
)

+ √
1 + δ4s‖
i+1‖

≤
(

1 + ‖Pi‖ 1
2 max{1, ‖	i‖}

2
√

rmin

)

ξi. (22)

Denote p = (q−1 + r−1)−1. Then combining (20)–(22) and
applying Hölder inequality, we get that

T2,i ≤
∥
∥
∥�̄−1

∥
∥
∥

3
2

k∑

i=0

∥
∥
∥
∥
∥
∥

k∏

j=i+1

(

1 − 1

2
(
1 + ‖�̄−1‖ · ‖P̄j+1‖

)

)

· ‖Pk+1‖ 1
2 · ‖Pi+1‖

(

1 + ‖Pi‖ 1
2 max{1, ‖	i‖}

2
√

rmin

)

ξi

∥
∥
∥
∥
∥

p

≤
∥
∥
∥�̄−1

∥
∥
∥

3
2

sup
i≥0

‖Pi‖2q · max

{

1, sup
i≥0

‖	i‖2q

}

·
k∑

i=0

∥
∥
∥
∥
∥
∥

k∏

j=i+1

(

1 − 1

2
(
1 + ∥

∥�̄−1
∥
∥ · ‖P̄j+1‖

)

)

·‖Pk+1‖ 1
2

(

1 + ‖Pi‖ 1
2

2
√

rmin

)

ξi

∥
∥
∥
∥
∥

r

.

By Schwarz inequality and Lemma 4, we have

sup
k≥i

E

[
exp

(
ε‖Pk+1‖ 1

2 · ‖Pi‖ 1
2

)]

≤ sup
k≥i

{
E
[
exp(ε‖Pk+1‖)

]} 1
2 · {E[exp(ε‖Pi‖)

]} 1
2 < ∞.

The rest of the proof is analogous to [37, Th. 4.1] and
therefore, further details are not provided here. By Lemma 4,
we draw the desired conclusion. �

Remark 5: From (18) and the definition of �k, it is seen
that the upper bound of compressed estimation error is
composed of three components: the first component is related
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to the compression error, which has a positive correlation with
δ4s; the second component is associated with the magnitude
of system noise vk; and the last one depends on the magnitude
of the state variation ωk. Regarding the first part, it can be
small since the RIP constant can be small. For instance, let the
sensing matrix D be a Gaussian or Bernoulli random matrix.
Then the RIP constant δ4s for D can be arbitrarily small when
the inequality d ≥ 480s log(m/4s)/δ3

4s holds with d and m
being dimensions of D. As a result, assuming that the system
noise vk and the parameter variation ωk are also minimal, the
upper bound of the estimation error C will be small.

Apart from the compressed estimation error, we derive the
estimation error bound for the state of interest based on the
CS theory.

Theorem 2: Suppose that D ∈ R
d×m satisfies 4sth RIP with

s satisfying δ3s +3δ4s < 2. Under the same conditions as used
in Theorem 1, the upper bound for the estimation error of the
original state vector satisfies

lim sup
k→∞

∥
∥xk − x̂k,i

∥
∥

p ≤ CsC

with Cs being defined in Lemma 6 in Appendix A.
Proof: By Theorem 1, the upper bound of compressed

estimation error is given

lim sup
k→∞

‖ζ̃k+1,i‖p = lim sup
k→∞

‖ζk+1 − ζ̂k+1,i‖p

= lim sup
k→∞

‖Dxk+1 − ζ̂k+1,i‖p ≤ C.

Let C̄ = C in (8) of Algorithm 1, we can obtain that the
recovered state vector x̂k+1,i obeys

lim sup
k→∞

‖xk+1 − x̂k+1,i‖p ≤ CsC.

This proves the theorem. �
Ultimately, we present the probability that the upper bound

for the estimation error of the original high-dimensional state
vector stays in a certain range.

Corollary 1: Under the same conditions as used in
Theorem 2, for any given constant ε > 0 and γ ∈ (0, 1), there
exists time instant Tε

P

{∥
∥xk − x̂k,i

∥
∥ ≤ η(CsC + ε)1−γ

}
≥ 1 − (CsC + ε)γ

η

holds with η = max{1, 2(CsC + ε)γ }.
Proof: Consider the special case of p = 1 in Theorem 2, and

we have lim supk→∞ E[‖xk − x̂k,i‖] ≤ CsC. In other words,
∀ε > 0, ∃ Tε ∈ R, s.t.∀t ≥ Tε, E[‖xk − x̂k,i‖] ≤ CsC +ε. Then
by Markov inequality, we have for any t ≥ Tε

P

(
‖xk − x̂k,i‖ ≥ η(CsC + ε)1−γ

)

≤ E
[‖xk − x̂k,i‖

]

η(CsC + ε)1−γ
≤ (CsC + ε)γ

η
≤ 1

2
.

This completes the proof. �
Remark 6: Note that Cs may depend only on the RIP

constant δ4s. It immediately follows that CCs can be suffi-
ciently small for a sufficiently small δ4s and in consequence,
η becomes close to 1. That is, the estimation error will likely
remain in the small range of zero with a high probability.

According to Theorems 1 and 2, it is clear that for the
s-sparse unknown state vectors xk, the upper bound of the
estimation error is positively related to the s-restricted isometry
constant δ4s that increases with s. Furthermore, we can see that
the stability results of the CDKF over the Markovian switching
topologies are established without requiring the independence
or stationarity conditions of the signals. Consequently, our
results are likely to be applicable to the feedback systems.

IV. SIMULATION

To demonstrate the efficacy of the CDKF for estimating the
sparse state vector, a simulation example is given as follows:
the sensor network composed of four sensors is represented
by three switched digraphs G1, G2, and G3 in Fig. 1. The
corresponding weighted adjacency matrices are given by

A1 =

⎡

⎢
⎢
⎣

0.8 0.1 0.1 0
0 0.9 0.1 0
0 0 0.2 0.8

0.2 0 0.6 0.2

⎤

⎥
⎥
⎦, A2 =

⎡

⎢
⎢
⎣

0.3 0.7 0 0
0.2 0.3 0 0.5
0 0 1 0

0.5 0 0 0.5

⎤

⎥
⎥
⎦

A3 =

⎡

⎢
⎢
⎣

0.8 0 0 0.2
0 1 0 0
0 0 0.4 0.6

0.2 0 0.6 0.2

⎤

⎥
⎥
⎦.

In addition, the switching signal m(k) is governed by a time-
homogeneous Markov chain with probability transmission
matrix being

P =
⎡

⎣
0.2 0.3 0.5
0.5 0.1 0.4
0.6 0.2 0.2

⎤

⎦.

Obviously, Assumption 3 on communication topologies is
satisfied. Four sensors cooperate to estimate a 2-sparse 80-D
state vector xk and the positions of the two nonzero elements
are given randomly. Here, we focus on the case where two
elements of ωk in (2) follow 1/k2 · N (0, 0.12).

It is assumed that the noise sequence {vk,i ∈ R} is i.i.d. with
Gaussian distribution N (0, 0.22). The stochastic regression
vectors {hk,i ∈ R

80} are generated according to the following
expression:

hk,i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0, . . . , 0, 1.1k +
k−1∑

p=0

1.1pok−p,i

︸ ︷︷ ︸
ith

, 0, . . . , 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

T

where op,i ∼ N (0, 0.12). The sensing matrix D is given
by the Gaussian matrix D ∼ N (0, 1/3, 3, 80). Obviously,
compressed regression vectors ϕk,i = Dhk,i ∈ R

3 satisfy
Assumption 2, while uncompressed high-dimensional ones hk,i

fail to meet the traditional excitation condition in [10].
To demonstrate the estimation performance of Algorithm 1,

we repeat CDKF, DKF in [10], compressed consensus normal-
ized least mean squares algorithm (CC-NLMSs) in [33], and
CCRA in [30] for 200 times with the same initial values. As
for the compressed algorithms (i.e., CDKF, CC-NLMS, and
CCRA), we use the Gaussian matrix D ∼ N (0, 1/3, 3, 80)
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Fig. 1. Topological structure of the sensor network.

Fig. 2. Estimation errors for different algorithms.

Fig. 3. Estimation errors of sensors for cooperative and noncooperative
algorithms.

as the sensing matrix and resort to the orthogonal matching
pursuit algorithm [42] to perform the reconstruction step in
Algorithm 1. Fig. 2 demonstrates that the estimation error of
CDKF is apparently smaller than that of CC-NLMS while the
estimation error of the DKF stays large. Also, we compare
the CDKF with the noncooperative compressed Kalman filter
(noncooperative CKF) (i.e., A = I4) in Fig. 3 to demonstrate
the cooperative effect of sensors. We can see that the estima-
tion error for the CDKF falls into a small neighborhood of
zero, while for the noncooperative case, the estimation error
of every sensor is large.

V. CONCLUDING REMARKS

This article investigates the distributed state estimation
problems of the sparse state vector over Markovian switching
topologies. According to the compression-estimation-
reconstruction scheme, we present the CDKF to estimate the
sparse state of interest cooperatively. It is shown that the
proposed compressed algorithm may effectively accomplish

the estimation task, even when the uncompressed one
falls short in accurately estimating unknown sparse state
vectors because of inadequate excitation. As for stability
analysis, the estimation error bound is established under a
compressed cooperative excitation condition. Here, we require
no independent or stationary assumptions. Thus, our stability
analysis is applicable to feedback systems, which facilitates
further research on problems pertaining to the combination of
distributed state estimation and control. In addition, further
research is necessary to explore how to introduce an error
feedback scheme to lower the compression error.

APPENDIX A
COMPRESSED SENSING THEORY

CS is a signal processing technique that allows efficient
sensing and reconstruction of a approximately sparse signal.
It considers the recovery of a signal x ∈ R

m from a noisy
observation

z = Dx + ε (23)

where D ∈ R
d×m(d � m) is the sensing matrix and ε ∈ R

d

is the noise. It is undoubtedly challenging to deal with the
underdetermined linear system (23). However, the sparsity of a
signal can be beneficial to the recovery problem. Accordingly,
the true signal x is supposed to be s-sparse, that is, ‖x‖�0 ≤ s
for some s ≤ d � m.

The reconstruction performance will greatly depend on
1) the generation of the sensing matrix D and 2) the design
of the signal reconstruction algorithm.

1) Generation of the Sensing Matrix: To ensure the accurate
recovery of the sparse signal x, Candès et al. [43]
introduced the following concept as a requirement for
the sensing matrix D.
Definition 3 (RIP): Let D ∈ R

d×m be the sensing
matrix and s (1 ≤ s ≤ m) be an integer. We say that
the matrix D satisfies the RIP of order s if there exists a
constant δs ∈ [0, 1), which is the smallest quantity such
that

(1 − δs)‖a‖2 ≤ ‖DLa‖2 ≤ (1 + δs)‖a‖2 ∀a ∈ R
#L

(24)

holds for every submatrix DL which is formed by
columns of D corresponding to the index set L with
#L ≤ s. The notation #L represents the cardinality of the
set L.
Remark 7: Loosely speaking, the concept of RIP is a
characterization of the near orthogonality of the matrix,
at least for sparse vectors. An equivalent formulation
of (24) is 1−δs ≤ λmin(DT

LDL) ≤ λmax(DT
LDL) ≤ 1+δs.

Considerable progress has been made in generating the
sensing matrix satisfying the RIP [44]. For example,
for the Gaussian or Bernoulli random matrix satisfying
the RIP, the following theoretical result was established
in [45]:
Lemma 5 [45]: For given d, m, and 0 < δ < 1,
suppose that the sensing matrix D ∈ R

d×m is a Gaussian
or Bernoulli random matrix, then there exist positive
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constants c1, c2 which only relates to δ such that for a
prespecified δ and any s ≤ c1d/ log(m/s), the probability
that RIP holds is no less than 1 − 2 exp(−c2d).
Remark 8: As mentioned in [45], when c1 is sufficiently
small, c2 enables to be larger than 0. Let c1 = δ3/120
and d ≥ 120s log(m/s)/δ3. Then, the probability that
the sensing matrix D satisfies RIP is not less than 1 −
2 exp(−c2d).

2) Design of the Signal Reconstruction Algorithm: In view
of the sparsity of the signal, the recovery problem of the
observation model (23) can be recast as follows:

min
x∈Rm

‖x‖�1
, s.t. ‖z − Dx‖ ≤ C̄ (25)

where C̄ measures the magnitude of noise with ‖ε‖ ≤ C̄.
The following lemma from [43] measures the deviation
between the recovered and true signals.
Lemma 6: Let s satisfy δ3s + 3δ4s < 2 where δ3s and
δ4s are defined in Definition 3. Then the recovered
signal x∗ derived from solving the convex optimization
problem (25) obeys

∥
∥x − x∗∥∥ ≤ CsC̄

where the constant Cs may only depend on δ4s.
Remark 9: As illustrated in the proof procedure in [43],
the constant Cs can be taken as 4/(

√
3(1 − δ4s) −√

1 + δ3s), which is positively related to δ4s. In
Lemma 6, it is demonstrated that the recovery of the
signal is stable. That is, small noise ε can only result in
small derivations between the recovered and true signals.
Furthermore, the signal can be exactly recovered when
the noise is zero.

APPENDIX B
PROOF OF LEMMA 3

Combining (5) and (6) and the well-known matrix inversion
formula (see, e.g., [46, Theorem 1.1.17]), we have for any
k ∈ [zρh + 1, (zρ + 1)h]

Pk,i =
⎧
⎨

⎩

n∑

j=1

aji,m(k−1)P̄
−1
k,j

⎫
⎬

⎭

−1

≤
n∑

j=1

aji,m(k−1)P̄k,j

=
n∑

j=1

aji,m(k−1)

(
P̄k,j − �

) + �

=
n∑

j=1

aji,m(k−1)

(
P−1

k−1,j + r−1
j ϕk−1,jϕ

T
k−1,j

)−1 + �

≤
n∑

j=1

aji,m(k−1)Pk−1,j + �. (26)

Then, recursively, we have

Pk,i ≤
n∑

j=1

aji,m(k−1)

(
n∑

t=1

atj,m(k−2)Pk−2,t

)

+ 2�

=
n∑

j=1

Ak−1
k−2(j, i) Pk−2,j + 2�

≤ · · · ≤
n∑

j=1

Ak−1
ρh′ (j, i) Pρh′,j + (

k − ρh′)�

≤
n∑

j=1

Ak−1
ρh′ (j, i) Pρh′,j + h′� � �i

(
ρh′, k − 1

)
.

Hence, by the above inequality and the matrix inversion
formula, we obtain

n∑

j=1

aji,m(k)

(
P−1

k,j + r−1
j ϕk,jϕ

T
k,j

)−1

≤
n∑

j=1

aji,m(k)

(
�−1

j

(
ρh′, k − 1

) + r−1
j ϕk,jϕ

T
k,j

)−1

=
n∑

j=1

aji,m(k)�j
(
ρh′, k − 1

)

−
n∑

j=1

aji,m(k)

�j
(
ρh′, k − 1

)
ϕk,jϕ

T
k,j�j

(
ρh′, k − 1

)

rj + ϕT
k,j�j(ρh′, k − 1)ϕk,j

= �i
(
ρh′, k

)

−
n∑

j=1

aji,m(k)

�j
(
ρh′, k − 1

)
ϕk,jϕ

T
k,j�j

(
ρh′, k − 1

)

rj + ϕT
k,j�j(ρh′, k − 1)ϕk,j

≤ �i
(
ρh′, k

)

−
n∑

j=1

aji,m(k)

�j
(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1+‖ϕk,j‖2 �j
(
ρh′, k − 1

)

(
rj + 1

)(
1 + λmax

(
�j(ρh′, k − 1)

)) .

Hence, by the above inequality and (26), we have

Pk+1,i ≤ � + �i
(
ρh′, k

)

−
n∑

j=1

aji,m(k)

�j
(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1+‖ϕk,j‖2 �j
(
ρh′, k − 1

)

(
rj + 1

)(
1 + λmax

(
�j(ρh′, k − 1)

)) .

(27)

For constants aj, bj ≥ 0, by Cr- and Schwartz inequalities, it
is obvious that

∑m
j=1 ajbj ≤ ∑m

j=1 aj
∑m

j=1 bj. Moreover, when
setting aj = (cj/dj), bj = dj with cj and dj being positive
constants, we have

∑m
j=1 (cj/dj) ≥ ([

∑m
j=1 cj]/[

∑m
j=1 dj]).

Recall the definitions of �i(ρh′, k) and � ′(ρh′). Hence,
�i(ρh′, k) ≤ � ′(ρh′) holds for any k ≥ 0 and i ∈ V . Also we
have

tr

(
n∑

i=1

�i
(
ρh′, k

)
)

= tr

⎛

⎝
n∑

i=1

⎛

⎝
n∑

j=1

Ak
ρh′(j, i)Pρh′,j + h′�

⎞

⎠

⎞

⎠

= tr

⎛

⎝nh′� +
n∑

j=1

Pρh′,j

⎞

⎠

= nh′tr(�) + tr
(
Pρh′

)
. (28)

For k ∈ [zρh + 1, (zρ + 1)h], we have by (27) and (28)
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tr(Pk+1) = tr

(
n∑

i=1

Pk+1,i

)

≤ ntr(�) + tr

(
n∑

i=1

�i
(
ρh′, k

)
)

− tr

⎛

⎜
⎝

n∑

i=1

n∑

j=1

aji,m(k)

�2
j

(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1+‖ϕk,j‖2

(
rj + 1

)(
1 + λmax

(
�j(ρh′, k − 1)

))

⎞

⎟
⎠

= n
(
h′ + 1

)
tr(�) + tr

(
Pρh′

)

−
n∑

j=1

tr

(

�2
j

(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1+‖ϕk,j‖2

)

(
rj + 1

)(
1 + λmax

(
�j(ρh′, k − 1)

))

≤ n
(
h′ + 1

)
tr(�) + tr

(
Pρh′

)

−
∑n

j=1 tr

(

�2
j

(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1+‖ϕk,j‖2

)

∑n
j=1

(
rj + 1

)(
1 + λmax

(
�j(ρh′, k − 1)

))

≤ n
(
h′ + 1

)
tr(�) + tr

(
Pρh′

) − tr
(
Pρh′

)

tr(� ′(ρh′))

·
∑n

j=1 tr

(

�2
j

(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1+‖ϕk,j‖2

)

∑n
j=1

(
rj + 1

) · ∑n
j=1

(
1 + λmax

(
�j(ρh′, k − 1)

))

≤ n
(
h′ + 1

)
tr(�) + tr

(
Pρh′

) − tr
(
Pρh′

)

tr(� ′(ρh′))

·
∑n

j=1 tr

(

�2
j

(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1+‖ϕk,j‖2

)

n
∑n

j=1

(
rj + 1

)
(1 + λmax(� ′(ρh′)))

.

Adding both sides of the above inequality yields

Tρ+1 =
(zρ+1)h∑

k=zρh+1

tr(Pk+1)

≤ nh
(
h′ + 1

)
tr(�) + htr

(
Pρh′

) − htr
(
Pρh′

)

·
tr

(
∑(zρ+1)h

k=zρh+1

∑n
j=1 �2

j

(
ρh′, k − 1

) ϕk,jϕ
T
k,j

1+‖ϕk,j‖2

)

nh
∑n

j=1

(
rj + 1

)
(1 + λmax(� ′(ρh′))) · tr(� ′(ρh′))

= (
1 − bρ+1

)
htr

(
Pρh′

) + nh
(
h′ + 1

)
tr(�).

Again, for the first term of the above equation, since Pρh′,j ≤
∑n

t=1 Aρh′−1
k+1 (t, j)Pk+1,t + (ρh′ − k − 1)�, we obtain

htr
(
Pρh′

) =
(zρ−1+1)h∑

k=zρ−1h+1

n∑

j=1

tr
(
Pρh′,j

)

≤ Tρ + 1

2
nh

(
h′ + 1

)
tr(�)

and

Tρ+1 ≤ (
1 − bρ+1

)
Tρ + 3

2
nh

(
h′ + 1

)
tr(�)

= (
1 − bρ+1

)
Tρ + d′, ρ ≥ 0.
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