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Convergence of the Distributed SG Algorithm
Under Cooperative Excitation Condition

Die Gan and Zhixin Liu , Member, IEEE

Abstract— In this article, a distributed stochastic gradient (SG)
algorithm is proposed where the estimators are aimed to col-
lectively estimate an unknown time-invariant parameter from
a set of noisy measurements obtained by distributed sensors.
The proposed distributed SG algorithm combines the consensus
strategy of the estimation of neighbors with the diffusion of
regression vectors. For the theoretical investigation of the pro-
posed algorithm, the main challenge lies in analyzing the influence
of the Laplacian matrix on the state transition matrix and the
properties of the product of nonindependent and nonstationary
random matrices. Some analysis techniques such as graph theory
and martingale theory are used to deal with the above issues.
A cooperative excitation condition is introduced, under which
the convergence of the distributed SG algorithm can be obtained
without relying on the independency or stationarity assumptions
of regression vectors which are commonly used in the existing
literature. Furthermore, the convergence rate of the algorithm
can be established. Finally, we show that all the sensors can
cooperate to fulfill the estimation task even though any individual
sensor cannot by a simulation example.

Index Terms— Convergence, cooperative excitation condition,
distributed estimation, stochastic dynamic system, stochastic
gradient (SG) algorithm.

I. INTRODUCTION

PARAMETER estimation or filtering is one of the impor-
tant issues in diverse fields including statistical learning,

signal processing, system identification, and adaptive control.
With the development of computer science and communica-
tion, sensor networks are widely applied due to the advantages
of flexibility, fault tolerance, and ease of deployment. The
sensor networks bring more and more data, and how to apply
the data to design proper estimation algorithms is a promising
research direction.
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Generally speaking, there are three manners to process the
information from the sensors: centralized, distributed, and a
combination of both. For the centralized method, the informa-
tion measured by the sensors is transmitted to a fusion center
which uses the information to estimate the unknown signals
or parameters. Compared with the distributed algorithms, the
centralized ones lack robustness and bring a large amount
of computation and communication burden. In distributed
algorithms, the sensors can accomplish complicated tasks in a
cooperative manner even though each sensor can only receive
local information. A number of theoretical results on distrib-
uted estimation or learning algorithms (e.g., [1], [2], [3]) arise
because of comprehensive practical applications in engineering
systems, such as target localization and collaborative spectral
sensing, see, e.g., [4], [5].

In the investigation of distributed estimation algorithms,
how to use the local information to design the algorithms
is important for the property of the algorithms. Three types
of strategies are often adopted in the current literature: incre-
mental strategy (cf., [6]), consensus strategy (cf., [7]), and
diffusion strategy (cf., [8], [9]). Based on these three strategies,
many different distributed adaptive estimation algorithms are
proposed, such as the diffusion least mean squares (LMS), the
consensus-based Kalman filter, and the diffusion least squares.
Correspondingly, the stability and the convergence analysis
of the distributed estimation algorithms are also investigated
under some signal conditions (cf., [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19]). Schizas et al. [15] established
the stability results for a distributed LMS-type adaptive algo-
rithm with the strictly stationary ergodic regressor vectors.
Takahashi et al. [16] investigated the mean transient and
mean-square performance analysis of the diffusion LMS algo-
rithm with the independent and identically distributed regres-
sors. Cattivelli and Sayed [17] provided the steady-state mean
and mean-square analysis of the diffusion LMS algorithm
with the independent Gaussian regressors. Arablouei et al. [18]
presented the convergence analysis of a partial-diffusion recur-
sive least squares algorithm for the independent and ergodic
input vectors. Lei and Chen [19] studied the convergence
of the distributed stochastic approximation algorithm with
ergodic signals. So far, most results require that the regression
signals satisfy some stringent conditions, such as indepen-
dency, stationarity, and ergodicity assumptions, which makes
it hard or even impossible to apply these theoretical results
to practical feedback control systems such as autoregressive
moving-average with exogenous input (ARMAX) model and
Hammerstein system where the regressors are often generated
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by the past input and output signals. We remark that a
preliminary attempt toward the relaxation of the independency
and stationarity assumptions was made by Chen et al. [20],
where they provided a cooperative excitation condition to
guarantee the stability of the diffusion LMS algorithm, and
some elegant results for the distributed LMS algorithm were
further established by Xie and Guo [8] and [21] under a
general cooperative information condition.

It is well-known that the standard stochastic gradient (SG)
algorithm has the advantages of simple expression and easy
computation. The SG algorithm is widely applied in the area
of adaptive control and also has deep connections with the
SG descent algorithm and its variants which are widely used
to deal with optimization problems in machine learning [22].
With the development of sensor networks, the distributed
implementations of SG descent algorithms have attracted much
attention of researchers (cf., [23], [24], [25], [26], [27], [28],
[29], [30], [31]).

In this article, we consider a network of sensors which
are aimed to collectively estimate an unknown time-invariant
parameter. We propose a distributed SG algorithm based on
the combined diffusion and consensus strategies and study
the convergence properties of the proposed algorithm for a
dynamic system. The analysis of the influence of the Laplacian
matrix corresponding to the communication graph on the state
transition matrix and the analysis of properties of the product
of nonindependent and nonstationary random matrices bring
challenges to us. The main contributions of this article are
summarized as follows.

1) We propose a novel distributed SG algorithm where
each sensor is only allowed to communicate with its
neighbors. The information of the regression vectors is
first diffused through the sensor networks, and then the
estimation of the unknown parameters is obtained using
the consensus-based strategy.

2) By introducing a cooperative excitation condition on the
regressor signals which is weaker than the persistent
excitation (PE) condition commonly used in the litera-
ture (see e.g., [32], [33], [34]), the strong consistency
of the distributed SG algorithm can be established.
By the cooperative excitation condition, we see that the
estimation task can be still fulfilled by the cooperation of
multiple sensors even if any of them cannot. Our results
can be degenerated to the convergence results on the
standard SG algorithm (cf., [35], [36]).

3) We finally establish the convergence rate of the dis-
tributed SG algorithm under the cooperative excitation
condition. Different from the convergence analysis of
the distributed SG descent algorithms in most existing
literature where the data are required to satisfy the
independent and identically distributed (i.i.d.) condition
(see e.g., [25], [26]), our theoretical results are obtained
without relying on such stringent assumptions of the
system signals, which makes it possible for applications
to the stochastic feedback systems. We use the graph
theory, martingale theory, and the specific structure of
the proposed distributed SG algorithm to overcome the

difficulties arising in the analysis of the product of
nonindependent and nonstationary random matrices.

The rest of this article is organized as follows. In Section II,
we first propose the distributed SG algorithm and introduce
the cooperative excitation condition. A necessary and sufficient
condition for the strong consistency of the proposed algorithm
and the conditions of the regressors for the convergence of the
algorithm are given in Section III. The convergence rate of the
distributed SG algorithm is given in Section IV. A simulation
example is given in Section V to illustrate our theoretical
results. The concluding remarks are made in the last section.

II. PROBLEM FORMULATION

A. Some Preliminaries

In this article, we use A ∈ R
m×n to denote an m ×

n-dimensional matrix. For a matrix A, �A� denotes its Euclid-
ean norm, i.e., �A� � (λmax(AAT ))(1/2), where the notation
T denotes the transpose operator and λmax(·) denotes the
largest eigenvalue of the matrix. The notations det(·) and
tr(·) are used to denote the determinant and trace of the
corresponding matrix respectively. If all the elements of a
matrix are nonnegative, then it is a nonnegative matrix, and
furthermore, if

�n
j=1 ai j = 1 for all i , then it is called

a stochastic matrix. The Kronecker product A ⊗ B of two
matrices A = (ai j) ∈ R

m×n and B ∈ R
p×q is defined as

A ⊗ B =
⎛⎜⎝a11 B · · · a1n B

...
. . .

...
am1 B · · · amn B

⎞⎟⎠ ∈ R
mp×nq .

Our purpose is to propose a distributed estimation algorithm
based on the information from a set of sensors and investigate
the convergence properties of the proposed algorithm. The
sensors in sensor networks are modeled as nodes, and the
relationship between sensors is presented as an undirected
weighted graph G = (V, E,A), where V = {1, 2, 3, . . . , n}
is the set of sensors (i.e., nodes), the edge set E ⊆ V × V
denotes the communication between sensors, and A = (ai j)
is the weighted matrix. The elements of the matrix A satisfy:
ai j > 0 if (i, j) ∈ E and ai j = 0 otherwise. The neighbor set
of the sensor i is denoted as Ni = { j ∈ V, (i, j) ∈ E}, and
the sensor i is also included in this set. Each sensor can only
exchange information with its neighbors. A path of length �
is a sequence of nodes {i1, . . . , i�} satisfying (i j , i j+1) ∈ E for
all 1 ≤ j ≤ � − 1. The graph G is called connected if for
any two sensors i and j , there is a path connecting them. The
diameter D(G ) of the graph G is defined as the maximum
shortest length of paths between any two sensors.

For simplicity of analysis, the properties of the distributed
algorithm are considered under the condition that the weighted
matrix A is symmetric and stochastic. Hence, the Laplacian
matrix L of the graph G can be written as L = I − A with
I being the identity matrix. According to [37], we can obtain
the following properties about the Laplacian matrix L.

Lemma 1: The Laplacian matrix L defined above has at
least one zero eigenvalue, with other eigenvalues positive and
less than or equal to 2. Moreover, if the graph G is connected,
then L has only one zero eigenvalue.
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The following lemma is often used in our analysis and we
list it as follows.

Lemma 2 [38]: Let Dt � 1 + �t
j=1 d j , d j ≥ 0, then

∞	
j=1

d j

Dα
j

< ∞ ∀ α > 1

∞	
j=1

d j

D j
= ∞, iff lim

j→∞ D j = ∞.

B. Distributed SG Algorithm

In this article, we consider a network consisting of n
sensors. The signal model of each sensor i ∈ {1, . . . , n}
is assumed to obey the following time-invariant regression
stochastic model:

yi
k+1 = θT ϕi

k + εi
k+1, k ≥ 0 (1)

where yi
k is the scalar observation of the sensor i at the time

instant k, ϕi
k ∈ R

m is the random regression vector which may
be the function of the current and past inputs and outputs,
θ ∈ R

m is an unknown parameter to be estimated, and {εi
k} is

a noise process.
We aim at designing a distributed adaptive estimation

algorithm where all the sensors cooperatively estimate the
unknown parameter θ of the stochastic dynamical system (1)
using local information {y j

k+1,ϕ
j
k} j∈N i , and further establish-

ing the (almost sure) convergence property and the conver-
gence rate of the proposed distributed algorithm.

The standard SG algorithm is commonly used in the area
of adaptive control and system identification (e.g., [36], [39]).
Inspired by Liu et al. [1] and based on the standard SG
algorithm in the context of stochastic adaptive control, we pro-
pose the following distributed SG algorithm to cooperatively
estimate the unknown parameter θ . The detailed algorithm can
be found in Algorithm 1.

Remark 3: Algorithm 1 designed by combining the consen-
sus strategy of the estimation of neighbors with the diffusion
strategy of regression vectors is online and updated from
time to time using new measurement data. We see that the
right-hand side of (2) in Algorithm 1 consists of two parts:
the first part is the standard SG algorithm which tries to
minimize the prediction error using the innovation, while the
second part can be regarded as the result of minimizing the
weighted distance between the estimates of the sensor i and
its neighbors.

Remark 4: In Step 2, the multistep diffusion strategy of
regression vectors is used, which was widely used in the
design of the distributed algorithms (e.g., [40], [41], [42]).
The diffusion step Q plays an important role in establishing
the contraction property of the product of random matrices
k

p= j(Imn − μG p) (see the proof of Theorem 25 in Appen-
dix D). Moreover, by following the proof of Lemma 15, we see
that if the condition number of �T

k �k is bounded, then the
multistep diffusion step can be removed.

For convenience of analysis, we introduce the following
notations (see Table I). In Table I, col(·, . . . , ·) denotes the
vector stacked by the specified vectors, and diag(·, . . . , ·)

Algorithm 1 Distributed SG Algorithm

Input: {ϕi
k, yi

k+1}n
i=1, k = 0, 1, 2, . . .

Output: {θ̂ i
k+1}n

i=1, k = 0, 1, 2, . . .

Initialization: For every sensor i ∈ {1, . . . , n}, begin with
an arbitrary initial vector θ̂

i
0.

for each time k = 0, 1, 2, . . . do
for every sensor i = 1, . . . , n do

Step 1. Set the value as

x i
k(0) =

��ϕi
k

��2

r i
k

, r i
k � 1 +

k	
j=1

��ϕi
j

��2
.

Step 2. Perform the following diffusion process for
q = 0, 1, 2, . . . , Q with Q ≥ D(G ):

x i
k(q + 1) =

	
j∈N i

ai j x
j

k (q).

Step 3. Update the estimate θ̂
i
k+1 of the unknown

parameter,

zi
k

�
θ̂

i
k

 = x i
k(Q)

	
l∈N i

ali
�
θ̂

i
k − θ̂

l
k


θ̂

i
k+1 = θ̂

i
k + μ

ϕi
k

r i
k

�
yi

k+1 − �
ϕi

k

T
θ̂

i
k


� �� �

Standard SG

− μν
	
j∈N i

ai j

�
zi

k

�
θ̂

i
k

 − z j
k

�
θ̂

j
k

�
� �� �

Consensus−based item

(2)

where μ and ν are two step sizes lying in (0, 1), and r i
k is

defined in Step 1.

TABLE I

SOME NOTATIONS

denotes the block matrix formed in a diagonal manner of the
corresponding vectors or matrices.

Using the notations in Table I, we can rewrite (1) and (2)
into the following compact form:

Y k+1 = �T �k + �k+1

�̂k+1 = �̂k + μ�k R−1
k

�
Y T

k+1 − �T
k �̂k


− μνL (Xk(Q) ⊗ Im)L �̂k . (3)
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From the definition of Rk and (3), the term R−1
k can be

regarded as an adaptive gain matrix.

Let ��k = � − �̂k . It is clear that L � = 0, and then we
have the following error equation:��k+1 = (Imn − μGk)��k − μ�k R−1

k �T
k+1. (4)

To proceed with our analysis, we introduce some assump-
tions concerning the graph, regression vectors, and system
noise.

Assumption 5: The undirected graph G is connected.
Assumption 6 (Nonpersistent Cooperative Excitation Con-

dition): There exist two positive constants N and K0 such that
for k ≥ K0, the following inequality is satisfied:

λ(k)
max

λ
(k)
min

≤ N(log(�Rk�)) 1
3 , a.s. (5)

where λ(k)
max and λ

(k)
min represent the maximum and mini-

mum eigenvalues of the matrix, respectively, (n/m)Im +�n
i=1

�k
j=1 ϕi

jϕ
i
j
T
, and �Rk� → ∞ as k → ∞.

Remark 7: We give some illustrations for the necessity
and practicality of the above cooperative excitation condition.
Consider an extreme case where all the regressor vectors
ϕi

j are equal to zero. It is clear that Assumption 6 is not
satisfied, and the unknown parameter θ cannot be identified
since the observations do not contain any information about
the unknown parameter. To estimate θ , we should impose
some nonzero information (or excitation) conditions on the
regressor vectors ϕi

j . Therefore, we propose the above coop-
erative excitation condition to guarantee the convergence of
the distributed SG algorithm. For some practical engineering
systems, such excitation condition can be satisfied to guarantee
the performance of the closed-loop systems. For example,
the self-tuning regulator which is widely investigated in the
field of adaptive control has many applications in engineering
systems such as power system and turbine generator system
(see [43], [44]). We can design a dither signal in the self-tuning
regulator (cf., [45]) to make Assumption 2.2 be satisfied to deal
with the conflict between parameter estimation and control
performance.

Remark 8: It can be verified that the i.i.d. signals (by the
strong law of large numbers) and the stationary ergodic signals
(by the ergodic theorem) have the following property.

(Ergodicity Property): For any i ∈ {1, . . . , n}, the regressor
vectors ϕi

j satisfy the ergodicity property, i.e., there exists a
matrix H i such that

1

k

k	
j=1

ϕi
jϕ

i
j
T

k → ∞−−−−→ H i , a.s.

Furthermore, if
�n

i=1 H i is positive definite (cf., [19]), then
the ergodicity property implies the PE condition in the multiple
sensor case, i.e., λ(k)

max/λ
(k)
min ≤ c2 with c2 being a positive

constant, which means that Assumption 6 is satisfied. Hence,
Assumption 6 is weaker than the PE condition (see e.g., [32],
[33], [34]).

Remark 9: Guo [35] proved that the convergence of
the standard SG algorithm (i.e., the weighted matrix in

Algorithm 1 is an identity matrix) under the following
non-PE condition:

λmax

��k
j=1 ϕi

jϕ
i
j
T
�

λmin

��k
j=1 ϕi

jϕ
i
j
T
� ≤ Ñ

�
log r i

k

� 1
3
, a.s. (6)

where r i
k → ∞ as k → ∞. Assumption 6 can be degenerated

to the condition (6) when the sensor network is degenerated
to a single sensor case. In fact, Assumption 6 can reflect the
cooperative effect of multiple sensors in the sense that the
estimation task can be still fulfilled by the cooperation of
multiple sensors even if any of them cannot (see Example 27
in Section V).

Assumption 10: We assume that the system noise {εi
k, i =

1, . . . , n, k ≥ 1} is a martingale difference sequence, that is,
E(�k+1|Fk) = 0 with Fk = σ {ϕi

j , ε
i
j , i = 1, . . . , n, j ≤

k} and E(·|·) being the conditional mathematical expectation,
and there exist constants c0 > 0 and ε ∈ [0, 1) (which may
depend on ω) such that E(��k+1�2|Fk) ≤ c0�Rk�ε almost
surely (a.s.)

It is clear that the i.i.d. zero-mean bounded or Gaussian
noise εi

k which is independent of the regression signals can
satisfy Assumption 10.

III. CONVERGENCE OF DISTRIBUTED SG ALGORITHM

In this section, we will provide the convergence analysis of
the proposed distributed SG algorithm.

Let the state transition matrix �(k, j) be recursively defined
by

�(k + 1, j) = (Imn − μGk)�(k, j), �( j, j) = Imn . (7)

From the error equation (4), we can see that the analysis of
the error ��k+1 can be divided into two key steps.

1) Analyzing the properties of the product of random
matrices �(k, j) = 
k−1

p= j (Imn − μG p).
2) Analyzing the cumulative effect of noises.
To establish the properties of �(k, j), we first show that for

small step sizes μ and ν, we have 0 ≤ μGk ≤ Imn , which will
be used in the convergence analysis of the proposed algorithm.

Lemma 11: Suppose that Assumption 5 is satisfied. If μ(1+
4ν) ≤ 1, then we have

0 ≤ μGk ≤ Imn .

Proof: By Step 2 in Algorithm 1, we have

x i
k(Q) =

n	
j=1

a(Q)
i j

��ϕ
j
k

��2

r j
k

(8)

where a(Q)
i j is the i th row, j th column element of AQ (i.e., A

to the power of Q). The matrix A is stochastic, so is the matrix
AQ for Q ≥ 1. Hence, we have for i ∈ {1, . . . , n}

x i
k(Q) ≤

�
max

1≤ j≤n

��ϕ
j
k

��2

r j
k

�
n	

j=1

a(Q)
i j = max

1≤ j≤n

��ϕ
j
k

��2

r j
k

≤ �Ak�.

By the definition Xk(Q) in Table I, we have �Xk(Q)⊗ Im� ≤
�Ak�. Using Lemma 1, it follows that:

�μGk� ≤ μ(�Ak� + 4ν�Ak�) ≤ μ(1 + 4ν) ≤ 1. (9)

This completes the proof of the lemma. �
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By the definition of Gk in Table I, we see that Gk is
a nonnegative definite matrix. Thus, there exists a matrix
sequence {Bk, k ≥ 0}, such that for all k we have

B2
k = μGk . (10)

In the following, we will analyze the properties of �(k, j).
Lemma 12: Assume that the step sizes μ and ν sat-

isfy μ(1 + 4ν) ≤ 1. Then for any k ≥ 0 the following
inequality holds:

k−1	
j=0

��(k, j + 1)B j�2 ≤ mn.

Proof: By the definition of the state transition matrix
in (7), we have �(k, k) = Imn and

�(k, j + 1)�( j + 1, j) = �(k, j).

Then

mn = tr
�
�(k, k)�T (k, k)

�
≥ tr

⎛⎝k−1	
j=0

�
�(k, j + 1)�T (k, j + 1)

− �(k, j)�T (k, j)
�⎞⎠

= tr

⎛⎝k−1	
j=0

�(k, j + 1)
�

Imn − �( j + 1, j)

· �T ( j + 1, j)
�
�T (k, j + 1)

⎞⎠.

Furthermore, by �( j + 1, j) = Imn − μG j , we have

mn ≥ tr

⎛⎝k−1	
j=0

�(k, j + 1)
�
μG j + μG j (Imn − μG j )

�

·�T (k, j + 1)

⎞⎠
≥ tr

⎛⎝k−1	
j=0

�(k, j + 1)μG j�
T (k, j + 1)

⎞⎠
= tr

⎛⎝k−1	
j=0

�(k, j + 1)B2
j�

T (k, j + 1)

⎞⎠
≥

k−1	
j=0

��(k, j + 1)B j�2 (11)

which completes the proof of the lemma. �
How to deal with the noise effect of the distributed SG

algorithm is a crucial step for the convergence analysis of the
algorithm. The following lemma provides an upper bound of
the cumulative summation of the noises.

Lemma 13: Suppose that Assumption 10 is satisfied, and
the condition number of Rk is bounded

�
i.e., there exists

a positive constant γ which may depend on the sample ω
such that max1≤i≤n r i

k/min1≤i≤n r i
k ≤ γ


, then Sk tends to a

finite limit S as k → ∞, where Sk �
�k

j=0 � j R−1
j �T

j+1.
Furthermore, there exists a positive constant c which may
depend on the sample ω such that���Sk−1

�� ≤ c�Rk�−δ (12)

where�Sk−1 � S−Sk−1 and δ ∈ (0, ((1 − ε)/2)) with ε defined
in Assumption 10.

The proof is put in Appendix A.
Now, we present a necessary and sufficient condition for

the strong consistency of the distributed SG algorithm.
Theorem 14: Suppose that the condition number of Rk is

bounded, and μ(1 + 4ν) < 1. Then under Assumptions 5
and 10, the estimate �̂k defined in Table I converges to the
true parameter � a.s. for any initial value �̂0 if and only
if �(k, 0) → 0 a.s. as k → ∞.

Proof: By (4) and (7), we have the following expression:
��k+1 = �(k + 1, 0)��0

− μ

k	
j=0

�(k + 1, j + 1)� j R−1
j �T

j+1. (13)

We note that the second term on the right-hand side
of (13) is independent of ��0. Thus, ��k+1 → 0 for
any ��0 implies �(k + 1, 0)��0 → 0 as k → ∞, which means
that �(k + 1, 0) → 0 as k → ∞. This completes the proof of
the necessity part of the theorem.

Now, let us move on to the sufficiency part. It is clear that
to prove the convergence of the algorithm, we just need to
prove

k	
j=0

�(k + 1, j + 1)� j R−1
j �T

j+1 → 0 a.s., as k → ∞.

(14)

Set S−1 = 0. By the definition of �(·, ·) in (7), we have������
k	

j=0

�(k + 1, j + 1)� j R−1
j �T

j+1

������
=

������
k	

j=0

�(k + 1, j + 1)(S j − S j−1)

������
=

������Sk −
k	

j=0

[�(k + 1, j + 1) − �(k + 1, j)]S j−1

������
=

������Sk −
k	

j=0

[�(k + 1, j + 1) − �(k + 1, j)]S

+
k	

j=0

[�(k + 1, j + 1) − �(k + 1, j)]�S j−1

������
=

������Sk − S + �(k + 1, 0)S +
k	

j=0

�(k + 1, j + 1)
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· [Imn − �( j + 1, j)]�S j−1

������ (15)

where S, Sk,�Sk−1 are defined in Lemma 13.
Uisng Lemma 13, we have Sk − S → 0. By the condition

that �(k+1, 0) → 0 as k → ∞, we have �(k+1, 0)S → 0 as
k → ∞. Using Lemma 13 and Hölder inequality, we have������

k	
j=0

�(k + 1, j + 1)[Imn − �( j + 1, j)]�S j−1

������
=

������
k	

j=0

�(k + 1, j + 1)μG j�S j−1

������
≤ c

M	
j=0

��(k + 1, j + 1)B j� �B j�
�R j�δ

+ c

⎛⎝ k	
j=M+1

��(k + 1, j + 1)B j�2

⎞⎠
1
2

·
⎛⎝ k	

j=M+1

�B j�2

�R j�2δ

⎞⎠
1
2

. (16)

Furthermore, using Lemma 2 and Lemma 11, we have
∞	
j=1

�B j�2

�R j�2δ
=

∞	
j=1

�μG j�
�R j�2δ

≤ μ(1 + 4ν)

∞	
j=1

�A j�
�R j�2δ

≤
∞	
j=1

�� j�2�R−1
j �

�R j�2δ
≤ γ

∞	
j=1

�� j�2

�R j�1+2δ

< ∞. (17)

According to (17) and Lemma 12, we see that the two terms
on the right-hand side of (16) tend to zero if we first let
k → ∞, and then let M → ∞. Hence, (14) holds. This
completes the proof of the theorem. �

A key problem still remains unresolved: what conditions on
the regression signals {ϕi

k} can guarantee that �(k, 0) → 0 as
k → ∞? In the following, we will prove that under the cooper-
ative excitation condition (i.e., Assumption 6) the convergence
results for the distributed algorithm can be established.

Before stating the main theorem of this section, we first
give a lemma which provides a key step for the convergence
of the matrix �(k, 0).

Lemma 15: Suppose that Assumption 5 is satisfied. Then
there exists a positive constant σ , such that the following
inequality holds for all t ≥ 0 and all u ≥ 0:

λmin

⎛⎝ĝ(t+u)−1	
k=ĝ(t)

Gk

⎞⎠ ≥ σλmin

⎛⎝ĝ(t+u)−1	
k=ĝ(t)

n	
i=1

Ai
k

⎞⎠ (18)

where Ai
k � ((ϕi

k(ϕ
i
k)

T )/r i
k), ĝ(t) � max{k : dk ≤ t}, and

dk �
�n

i=1

�k−1
j=K0

((�ϕi
j�2)/(tr(R j )(log tr(R j−1))

(1/3))), and
K0 is defined in Assumption 6.

Proof: Set

H i
t =

ĝ(t+u)−1	
k=ĝ(t)

Ai
k, H t = diag

�
H1

t , . . . , Hn
t

�
�t =

ĝ(t+u)−1	
k=ĝ(t)

Gk, 	t =
n	

i=1

H i
t .

By the definition of Ak, Gk in Table I, we have

�t = H t + ν

ĝ(t+u)−1	
k=ĝ(t)

L (Xk(Q) ⊗ Im)L

	t =
ĝ(t+u)−1	

k=ĝ(t)

n	
i=1

Ai
k .

The eigenvalues of L are denoted in a nondecreasing order
as l1, . . . , lm, lm+1, . . . , lmn , and the corresponding unit orthog-
onal eigenvectors are denoted as ξ1, . . . , ξm, ξm+1, . . . , ξmn .
By Assumption 5, we see that l1 = · · · = lm = 0 and

ξ 1 = 1√
n

1n ⊗ e1, . . . , ξm = 1√
n

1n ⊗ em (19)

where 1n denotes the n-dimensional vector with all the entries
equal to 1, and e j ( j = 1, . . . , m) is the j th column of the
identity matrix Im .

Hence, for any unit vector η ∈ R
mn , we have the following

expression:

η =
m	

j=1

κ jξ j +
mn	

j=m+1

κ jξ j � η1 + η2

where
�m

j=1 κ2
j + �mn

j=m+1 κ2
j = 1. Then we have

ηT �tη = (η1 + η2)
T

⎛⎝H t + ν

ĝ(t+u)−1	
k=ĝ(t)

L (Xk(Q) ⊗ Im)L

⎞⎠
· (η1 + η2)

= ηT
1 H tη1 + ηT

2 H tη2 + 2ηT
1 H tη2

+ νηT
1

ĝ(t+u)−1	
k=ĝ(t)

L (Xk(Q) ⊗ Im)L η1

+ νηT
2

ĝ(t+u)−1	
k=ĝ(t)

L (Xk(Q) ⊗ Im)L η2

+ 2νηT
1

ĝ(t+u)−1	
k=ĝ(t)

L (Xk(Q) ⊗ Im)L η2

� s1 + s2 + s3 + s4 + s5 + s6. (20)

In the following, we will estimate si (i = 1, 2, . . . , 6).
By the definition of η1, we see that η1 is the eigenvector
corresponding to zero eigenvalue of L . Hence, we have
s4 = s6 = 0.
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We note that H t is a nonnegative definite matrix. Thus,
we can decompose it as H t = H(1/2)

t H (1/2)
t , then

s3 = 2ηT
1 H tη2 ≥ −ζηT

1 H tη1 − 1

ζ
ηT

2 H tη2

= −ζ s1 − 1

ζ
s2

where the inequality 2MT
1 M2 ≤ ζ MT

1 M1 + (1/ζ )MT
2 M2 is

used, with ζ being a positive constant and M1 and M2 being
two matrices with appropriate dimensions.

Let y = �m
j=1 κ2

j . Then by (8) and the definition of Xk(Q),
we have

s5 = νηT
2

ĝ(t+u)−1	
k=ĝ(t)

L (Xk(Q) ⊗ Im)L η2

≥ ν

ĝ(t+u)−1	
k=ĝ(t)

λmin(Xk(Q) ⊗ Im)

mn	
j=m+1

l2
j κ

2
j

≥ aν

ĝ(t+u)−1	
k=ĝ(t)

tr(Ak)l
2
m+1(1 − y)

= aνtr(H t )l
2
m+1(1 − y) (21)

where a � mini, j∈{1,...,n} a(Q)
i j is a positive constant for Q ≥

D(G ) (cf., [46]).
In the following, we will estimate s1:

s1 = ηT
1 H tη1 =

⎛⎝ m	
j=1

κ jξ j

⎞⎠T

H t

⎛⎝ m	
j=1

κ jξ j

⎞⎠
= K T �T H t�K (22)

where K = (κ1, . . . , κm)T and � = (ξ1, . . . , ξm). By the
definition of ξ i in (19), we have

� = 1√
n

⎛⎜⎜⎜⎝
e1 e2 · · · em

e1 e2 · · · em
...

...
. . .

...
e1 e2 · · · em

⎞⎟⎟⎟⎠

H t� = 1√
n

⎛⎜⎜⎜⎝
H1

t e1 H1
t e2 · · · H1

t em

H2
t e1 H2

t e2 · · · H2
t em

...
...

. . .
...

Hn
t e1 Hn

t e2 · · · Hn
t em

⎞⎟⎟⎟⎠
= 1√

n

�
H1

t H2
t , . . . , Hn

t

T

�T H t� = 1

n

⎛⎜⎜⎜⎝
eT

1 H1
t + eT

1 H2
t + · · · + eT

1 Hn
t

eT
2 H1

t + eT
2 H2

t + · · · + eT
2 Hn

t
...

eT
m H1

t + eT
m H2

t + · · · + eT
m Hn

t

⎞⎟⎟⎟⎠.

Hence, we have �T H t� = (1/n)
�n

i=1 H i
t = (1/n)	t . By

this and (22), we have

s1 = 1

n
K T 	t K ≥ λmin(	t)

n
y. (23)

By the definition of s2, we have

s2 = ηT
2 H tη2 ≤ tr(H t )(1 − y). (24)

Substitute (21)–(24) into (20), we have for ζ ∈ (0, 1)

ηT �tη ≥ (1 − ζ )s1 +
�

1 − 1

ζ

�
s2 + s5

≥ (1 − ζ )λmin(	t)

n
y +

�
1 − 1

ζ

�
tr(H t )(1 − y)

+ aνtr(H t )l
2
m+1(1 − y). (25)

Thus, we have

λmin(�t ) ≥
�
(1 − ζ )λmin(	t)

n
−

�
aνtr(H t )l

2
m+1

+ tr(H t) − tr(H t )

ζ

��
y

+ aνtr(H t)l
2
m+1 + tr(H t) − tr(H t )

ζ
.

Taking ζ = (1/(1 + 0.5l2
m+1aν)) ∈ (0, 1), then we can obtain

the following inequality:
λmin(�t ) ≥

�
σλmin(	t) − 0.5aνl2

m+1tr(H t)
�

y

+ 0.5aνl2
m+1tr(H t )

where σ � ((l2
m+1aν)/(2n + l2

m+1aνn)) ∈ (0, 1). Hence,
by 0 ≤ λmin(	t) ≤ tr(H t) and y ∈ (0, 1), it is easy to obtain

λmin(�t ) − σλmin(	t)

≥ �
σλmin(	t ) − 0.5aνl2

m+1tr(H t )
 
(y − 1) > 0.

This completes the proof of the lemma. �
Remark 16: From Theorem 14, we can see that the prop-

erties of the product of the matrices (Imn − μG j ), j ≥ 0
are crucial for the strong consistency of the distributed SG
algorithm. Lemma 15 establishes a connection between the
eigenvalues of {Ai

k} and {Gk}, and thus builds a bridge
between the standard SG algorithm and the distributed SG
algorithm.
using Lemma 15, we have the following theorem.

Theorem 17: Let μ(1 + 4ν) < 1. Suppose that there exists
i1 ∈ {1, . . . , n} such that lim supk→∞(r i1

k /r i1
k−1) � r∗ < ∞,

and the condition number of Rk is bounded. Under Assump-
tions 5 and 6, we have �(k, 0) → 0 as k → ∞ a.s..

The proof of Theorem 17 is complicated, and we put it in
Appendix B.

Remark 18: For some typical cases such as the bounded
sequence {ϕi

k} (i.e., c ≤ �ϕ i
k� ≤ c) and the i.i.d. sequence

{ϕi
k}, the condition lim supk→∞(r i1

k /r i1
k−1) � r∗ < ∞ of

Theorem 17 can be easily verified.
Using Theorems 14 and 17, we have the following corollary.
Corollary 19: Under the conditions of Theorem 17,

if Assumption 10 is further satisfied, the convergence of the
distributed SG algorithm designed in Algorithm 1 can be
obtained.

Proof: Using Theorem 17, we have �(k, 0) → 0, as
k → ∞. Hence, from Theorem 14, the estimate �̂k defined
in Table I converges to the true parameter � a.s., which
completes the proof of the corollary. �

Although the convergence of the distributed SG algorithm is
established for the time-invariant connected graphs, the result
is also true when the graphs are time-varying and connected at
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each time instant by following the proof line of Corollary 19.
For a more general case where graphs are jointly connected,
the challenges for the theoretical analysis lie in the influence
of the Laplacian matrix of the corresponding graphs on the
product of the state transition matrices, and the theoretical
investigation for such a case will fall into our future work.

Remark 20: The cooperative excitation condition proposed
in Assumption 6 is reasonable in a sense that if there exists
only one sensor which satisfies the excitation condition (6),
then all the sensors in the network can satisfy Assumption 6.
We show this point under a mild condition (the condition
number of Rk is bounded) as follows:

λ(k)
max

λ
(k)
min

≤ mnγ ·
λmax

!�k
j=1 ϕ

i2
j ϕ

i2
j

T
"

λmin

!�k
j=1 ϕ

i2
j ϕ

i2
j

T
"

≤ mnγ Ñ
�

log r i2
k

� 1
3 ≤ mnγ Ñ (log(�Rk�)) 1

3

where i2 denotes the index of the sensor satisfying (6), γ is
defined in Lemma 13, and λ(k)

max and λ
(k)
min are defined in

Assumption 6.
Combining Remark 20 with Corollary 19, we see that if

only one sensor can fulfill the estimation task, then all the
sensors in our proposed algorithm can fulfill it.

Remark 21: Different from most results in the literature,
our results are obtained without using the independency
and stationarity assumptions on the regression signals, which
makes it possible to apply the distributed algorithm to practical
feedback systems.

IV. CONVERGENCE RATE OF THE

DISTRIBUTED SG ALGORITHM

In this section, we will consider the convergence rate of
the distributed SG algorithm. To prove the theorems of this
section, we first introduce the following two lemmas.

Lemma 22: If μ(1 + 4ν) < 1, then there exists a con-
stant τ1 ≥ 1 such that for any k ≥ 0, we have

det(Imn − μGk) ≥ [det(Imn − Ak)]τ1 .

Proof: By the definition of Gk and (9), we have

det(Imn − μGk) ≥ (λmin(Imn − μGk))
mn

= (1 − λmax(μGk))
mn

≥ [1 − λmax(μ(1 + 4ν)Ak)]mn

= [λmin(I − μ(1 + 4ν)Ak)]mn

≥ [det(I − μ(1 + 4ν)Ak)]
mn

≥ [det(I − Ak)]mn .

The lemma can be proved by taking τ1 = mn. �
Lemma 23: If μ(1 + 4ν) < 1, then we have the following

inequalities,1

1) ��(k, j)� ≤ 1, 0 ≤ j ≤ k, k ≥ 0

1Let {Ak } be a matrix sequence and {bk} be a positive scalar sequence.
Then by Ak = O(bk ) we mean that there exists a constant M > 0 such that
�Ak� ≤ Mbk , ∀k ≥ 0.

2)
1

�Rk�τ1
= O(��(k + 1, 0)�m), k ≥ 1

3) ��(k, j + 1)� = O(��(k, 0)��R j�nτ1)

4)

∞	
j=M+1

�� j�2

�R j�1+ς
≤ n1+ς

ς

1

�RM�ς
, ς > 0

where τ1 is defined in Lemma 22.
The proof of the above lemma is given in Appendix C.
In the following, we establish the specific relationship

between the error ��k and �(k, 0).
Lemma 24: Under the conditions of Theorem 14,

if limk→∞ �(k, 0) = 0, then we have the following
inequality:

��̂k − �� = O
�
��(k, 0)� δ

nτ1(1+δ)

�
a.s.

where δ is defined in Lemma 13 and τ1 can be taken as mn.
Proof: Let

β(k) = max{ j : �R j�nτ1 ≤ k}, k ≥ 0

�̄(k) = β
�
��(k, 0)�− 1

1+δ

�
, k ≥ 0.

By the definition of β(k) and �̄(k), we have

�R�̄(k)�nτ1 ≤ ��(k, 0)�− 1
1+δ

�R�̄(k)+1�nτ1 > ��(k, 0)�− 1
1+δ . (26)

According to Lemma 23 3), we have

��(k, �̄(k) + 1)� = O(��(k, 0)� · �R�̄(k)�nτ1)

= O
�
��(k, 0)� δ

1+δ

�
. (27)

We prove the following inequality by contradiction:
�̄(k) < k − 1, for large k. (28)

Suppose that there exists a large constant k0 such that �̄(k0) ≥
k0 − 1. Then by (26), we have

�Rk0−1�nτ1 ≤ ��(k0, 0)�− 1
1+δ .

Using Lemma 23 2), we see that there exists a positive constant
ĉ such that

�Rk0−1�nτ1 ≥ ĉ��(k0, 0)�−mn .

Thus, we have

ĉ ≤ ��(k0, 0)�mn− 1
1+δ

which is contradictory with �(k, 0) → 0 as k → ∞.
Note that by (9), we have �μG j� ≤ μ(1 +

4ν)γ ((�� j�2)/(�R j�). Hence, from Lemma 13 and (15) in
the proof of Theorem 14, we have the following estimation
for the noise term of the system:������

k−1	
j=0

�(k, j + 1)� j R−1
j �T

j+1

������
≤ ��Sk−1� + ��(k, 0)S�

+
k−1	
j=0

��(k, j + 1)� · �μG j� · ��S j−1�
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= O(�Rk�−δ) + O(��(k, 0)�)

+ cμ(1 + 4ν)γ

k−1	
j=0

��(k, j + 1)� · �� j�2

�R j�1+δ
.

Combining this with (28), we have������
k−1	
j=0

�(k, j + 1)� j R−1
j �T

j+1

������
= O(�R�̄(k)+1�−δ) + O(��(k, 0)�)

+ O

⎛⎝k−1	
j=0

��(k, j + 1)� · �� j�2

�R j�1+δ

⎞⎠. (29)

In the following, we estimate the last term on the right-hand
side of (29). Using Lemma 23 1) and (27), we have

k−1	
j=0

��(k, j + 1)� · �� j�2

�R j�1+δ

≤
�̄(k)	
j=0

��(k, �̄(k) + 1)� · ��(�̄(k) + 1, j + 1)�

· �� j�2

�R j�1+δ
+

k−1	
j=�̄(k)+1

��(k, j + 1)� · �� j�2

�R j�1+δ

= O
�
��(k, 0)� δ

1+δ

� ∞	
j=0

�� j�2

�R j�1+δ

+
k−1	

j=�̄(k)+1

�� j�2

�R j�1+δ
. (30)

Furthermore, using Lemma 2 and Lemma 23 4), we have

k−1	
j=0

��(k, j + 1)� · �� j�2

�R j�1+δ

= O
�
��(k, 0)� δ

1+δ

�
+ ���̄(k)+1�2

�R�̄(k)+1�1+δ

+
∞	

j=�̄(k)+2

�� j�2

�R j�1+δ

= O
�
��(k, 0)� δ

1+δ

�
+ O(�R�̄(k)+1�−δ).

Combining the above inequality with (26) and (29), then we
have ������

k−1	
j=0

�(k, j + 1)� j R−1
j �T

j+1

������
= O(�R�̄(k)+1�−δ) + O(��(k, 0)�)

+ O
�
��(k, 0)� δ

1+δ

�
= O

�
��(k, 0)� δ

nτ1(1+δ)

�
+ O(��(k, 0)�)

+ O
�
��(k, 0)� δ

1+δ

�
= O

�
��(k, 0)� δ

nτ1(1+δ)

�
(31)

where ��(k, 0)� ≤ 1 is used in the above inequality. Hence
by (13) and (31), we have

���k� = O
�
��(k, 0)� δ

nτ1(1+δ)

�
a.s. (32)

This completes the proof of the lemma. �
We further establish the convergence rate under the coop-

erative excitation condition (Assumption 6). We see that the
rate can be expressed via simply characterizable quantities.

Theorem 25: Under the conditions of Theorem 17 and
Assumption 10, we have

���k� = O
�
(log �Rk�)−δ1

�
a.s.

with δ1 being a positive constant.
The proof of the above theorem is given in Appendix D.
Remark 26: Using Theorem 25, the convergence rate of the

proposed distributed SG algorithm is mainly determined by
the parameters δ1 and �Rk�. After a careful calculation by
following the proof of Theorem 25 in Appendix D, we can
obtain that the parameter δ1 is positively related to μ, ν, and
lm+1, where lm+1 is the (m + 1)th eigenvalue of the Laplacian
matrix L = L ⊗ Im in a nondecreasing order and can be
regarded as a measure of the connectivity of the graph G .

V. SIMULATION EXAMPLE

In this section, we provide an example of nonindependent
regression signals to illustrate the cooperative effect in this
article.

Example 27: The network is composed of n = 28 sensors
whose dynamics obey (1) with m = 10. The system noises
εi

k, (i = 1, . . . , n, k ≥ 1) in (1) are independent and identi-
cally distributed with εi

k ∼ N (0, 1.22) (Gaussian distribution
with zero mean and variance 1.22). Set the unknown parameter
as θ = [1, 2, . . . , 10]T . Let ϕi

k ∈ R
10 (i = 1, . . . , n, k ≥ 1)

be generated by a state-space model

ui
k = Ai ui

k−1 + Biξ
i
k

ϕi
k = C i ui

k . (33)

For convenience, we take

Ai = diag{1.2, . . . , 1.2} ∈ R
10×10

Bi = e j ∈ R
10

C i = col{0, . . . , 0, eT
j

j th

, 0, . . . , 0} ∈ R
10×10

where j = mod (i, m) and e j ( j = 1, . . . , m) is the
j th column of the identity matrix Im (m = 10). Let {ξ i

k , k ≥
1, i = 1, . . . , n} be independent and identically distributed
with ξ i

k ∈ R ∼ N (0, 0.32).
The network structure is shown in Fig. 1. Here, we use the

Metropolis rule in [47] to construct the weights.
We can verify that for each sensor i(i = 1, . . . , 28), the

regression signals ϕi
k generated by (33) cannot satisfy the

excitation condition (6), but they can cooperatively satisfy
Assumption 6. We repeat the simulation for s = 500 times
with the same initial states.

1) For fixed step sizes μ = 0.25 and ν = 0.7,
the simulation results are shown in Fig. 2. We see
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Fig. 1. Network topology.

Fig. 2. Maximal and minimal MSEs of sensors using the standard SG
algorithm and the distributed SG algorithm.

that if all the sensors use the standard SG algorithm
(i.e., the weight matrix is an identity matrix) to esti-
mate θ , the mean square error (MSE) of each sensor
[i.e.,(1/s)

�s
p=1 �θ i,p

k − θ�2, k = 1, 2, . . . , where the
superscript p being the pth simulation. ] cannot con-
verge to zero, while the MSE of each sensor in the
distributed SG algorithm (i.e., Algorithm 1) converges to
zero. It is clear that the estimation task can be fulfilled
through exchanging information between sensors even
though any individual sensor cannot.

2) We compare our algorithm (Algorithm 1) with the dis-
tributed algorithms in [23] and [24] which are obtained
by the distributed optimization method.
(Distributed SG in [23])

θ i
k+1 = θ i

k − αk

	
l∈N i

�
θ i

k − θ l
k


+ βk

ϕi
k

r i
k

�
yi

k+1 − �
ϕi

k

T �
θ i

k + ζ i
k

 + γkζ
i
k

where αk = (1/k(1/3)), βk = (1/k), γk =
(1/(k(1/2)(log log k)1/2)), ζ i

k is the gradient measurement
noise, and ζ i

k is the annealing noise.
(Distributed SG in [24])

θ i
k+1 = θ i

k − ηk

	
l∈N i

�
θ i

k − θ l
k


+ λk

�
ϕi

k

r i
k

�
yi

k+1 − �
ϕi

k

T
θ i

k

 − ζ i
k

�

Fig. 3. Comparison of different distributed SG algorithms.

where ηk = (1/(28(1 + k)(1/3))) is the weight, λk =
(1/(1 + k)) is the step size, and ζ i

k is the noise.
We conduct the simulations using the same regressors,

initial states, and step sizes as above. The average MSEs on
the whole network [i.e.,(1/ns)

�n
i=1

�s
p=1 �θ i,p

k − θ�2, k =
1, 2, . . .] of the different distributed algorithms are shown in
Fig. 3, from which we see that the algorithm proposed in this
article has a faster convergence rate than the algorithms in [23]
and [24].

VI. CONCLUSION

This article proposed a distributed SG algorithm based on
the consensus strategy and the diffusion of the regression
vectors to cooperatively estimate an unknown time-invariant
parameter. We introduced a cooperative excitation condition,
under which the almost sure convergence of the proposed
algorithm can be guaranteed, and the convergence rate of
the algorithm can be established. Compared with the existing
results concerning the distributed estimation in the literature,
our results are obtained without relying on the independency
and stationarity assumptions, which makes it possible to apply
our results to the feedback control systems. Furthermore,
we found that the sensors can cooperate to finish the estimation
task even though any individual cannot. Many interesting
problems deserve to be further investigated, for example, the
convergence of the distributed SG algorithm with correlated
noise, the analysis of other distributed algorithms such as
the distributed Kalman filter, and the combination of the
distributed adaptive estimation with the distributed control.

APPENDIX A
PROOF OF LEMMA 13

Proof: By ε < 1, we see that 2 − ε − 2δ > 1. Since
Rk = Rk−1 + �T

k �k , we obtain

tr(Rk) = tr(Rk−1) + tr
�
�T

k �k

. (34)

Then using Lemma 2, we have the following inequality:
∞	

k=1

��k�2

�Rk�2−2δ−ε
≤ n2−2δ−ε

∞	
k=1

tr
�
�T

k �k


(tr(Rk))2−2δ−ε
< ∞.
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By the boundedness of the condition number of Rk , we have
�Rk��R−1

k � ≤ γ for all k. Using this and the above inequality,
we have

∞	
k=1

E
����k Rδ−1

k �T
k+1

��2##Fk


≤ c0

∞	
k=1

��k�2
��Rδ−1

k

��2�Rk�ε

= c0

∞	
k=1

��k�2
��R−1

k

��2−2δ�Rk�ε

≤ c0γ
2−2δ

∞	
k=1

��k�2

�Rk�2−2δ−ε
< ∞, a.s.

where Assumption 10 is used in the first inequality. By the
martingale convergence theorem, it follows that as k → ∞,�k

j=1 � j Rδ−1
j �T

j+1 converges a.s. Hence for any η > 0, if k
is large enough, then we have ��Sk−1,δ� < η, where �Sk−1,δ ��∞

j=k � j Rδ−1
j �T

j+1.

By the definition of � j and R j in Table I, we see that
� j R−δ

j = (R−δ
j ⊗ Im)� j . Then summation by parts yields the

following result:����Rδ
k ⊗ Im

�Sk−1

���
=

�������Rδ
k ⊗ Im

 ∞	
j=k

�
R−δ

j ⊗ Im

� j Rδ−1

j �T
j+1

������
=

�������Rδ
k ⊗ Im

 ∞	
j=k

�
R−δ

j ⊗ Im
��S j−1,δ −�S j,δ

������
=

�������Sk−1,δ − �
Rδ

k ⊗ Im
 ∞	

j=k

��
R−δ

j − R−δ
j+1

 ⊗ Im
�S j,δ

������
≤ η + η

�������Rδ
k ⊗ Im

 ∞	
j=k

��
R−δ

j − R−δ
j+1

 ⊗ Im

�������
≤ 2η. (35)

Furthermore, by (35) we have

��Sk−1� = ���R−δ
k ⊗ Im

�
Rδ

k ⊗ Im
�Sk−1

��
≤ ���R−δ

k ⊗ Im
�����Rδ

k ⊗ Im
�Sk−1

��
≤ 2η

���R−1
k ⊗ Im

��δ = 2η
��R−1

k

��δ ≤ 2ηγ δ

�Rk�δ

where �R−1
k ⊗ Im� = �R−1

k � is used. This completes the proof
of the lemma. �

APPENDIX B
PROOF OF THEOREM 17

Before proving Theorem 17, we first introduce two lemmas,
whose proof can be found in [35].

Lemma 28 [35]: Suppose that 0 ≤ Ck ≤ I p, k ≥ 0 with
Ck ∈ R

p×p. Set (k + 1, j) = (I − Ck)(k, j), ( j, j) =
I, ∀ k ≥ j, then we have

�(M, k)� ≤
�

1 − λmin(FkM )

2
�
1 + r2

kM

� 1
2

, M > k (36)

where FkM �
�M−1

j=k C j , rkM �
�M−1

j=k �C j�, and
λmin(FkM ) represents the minimum eigenvalue of FkM .

Lemma 29 [35]: Suppose that 0 ≤ Ck ≤ I p, k ≥ 0 with
Ck ∈ R

p×p. Then (k, 0) defined in Lemma 28 converges
to 0 as k → ∞, if there exists a sequence of monotonically
increasing positive integers {tk} with tk → ∞ as k → ∞, such
that

∞	
k=1

λmin(Fk)

1 + λ2
max(Fk)

= ∞ (37)

where Fk �
�tk−1

j=tk−1
C j .

Proof of Theorem 17:
Proof: Using Lemma 29, we just need to show that there

exists an integer sequence {tk} with tk → ∞ as k → ∞, such
that

∞	
k=1

λmin

��tk−1
j=tk−1

μG j

�
1 + λ2

max

��tk−1
j=tk−1

μG j

� = ∞. (38)

In the following, we will show this by three steps.
Step 1 (Construction of the Integer Sequence {tk}): Without

loss of generality, the constant K0 in Assumption 6 can
be taken to satisfy the inequality log tr(RK0) ≥ 1 since
�Rk� → ∞ as k → ∞. Thus, by the definition of dk and
ĝ(t) in Lemma 15, we have for t ≥ 0

t ≤ dĝ(t)+1 ≤ dĝ(t) + 1 ≤ t + 1. (39)

We first prove the following result:
ĝ(t) → ∞, t → ∞. (40)

By the boundedness of the condition number of Rk , we have
for large k

�Rk�
�Rk−1� = maxi r i

k

maxi r i
k−1

= maxi r i
k

mini r i
k

· mini r i
k

maxi r i
k−1

≤ maxi r i
k

mini r i
k

· r i1
k

r i1
k−1

≤ γ r∗.

Hence, we have

trRk

trRk−1
≤ n�Rk�

�Rk−1� ≤ nγ r∗. (41)

Then by (34) and (41), we have for any k ≥ K0

dk =
k−1	
j=K0

trR j − trR j−1

tr(R j)(log tr(R j−1))
1
3

≥ 1

nγ r∗

k−1	
j=K0

trR j − trR j−1

tr(R j−1)(log tr(R j−1))
1
3

≥ 1

nγ r∗

k−1	
j=K0

$ trR j

trR j−1

dx

x(log x)
1
3

= 3

2nγ r∗
�

log
2
3 trRk−1 − log

2
3 trRK0−1

�
. (42)

Since �Rk� k→∞−−−→ ∞, then we have dk → ∞ as k → ∞.
By the definition of ĝ(t), we further have ĝ(t) < ∞ for all
t > 0 and ĝ(t) → ∞ as t → ∞.
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By (40) and �R j� j→∞−−−→ ∞, we see that there exists
sufficiently large N1 such that for j ≥ ĝ(N1)

n(log trR j)
1
3

trR j
≤ 1

2N
(43)

where N is defined in Assumption 6. The integer sequence
{tk} can be taken as

tk = ĝ(N1 + kα), α = 2Nm(n + 2) + 1. (44)

Then by (40), we have tk → ∞ as k → ∞.
Step 2 [Estimation of λmin(

�tk −1
j=tk−1

μG j )]: By the proper-
ties of r i

j , we have

n	
i=1

tk−1	
j=tk−1

ϕi
jϕ

i
j
T

r i
j

≥
n	

i=1

tk	
j=tk−1

ϕi
jϕ

i
j
T

r i
j

− n Im

=
tk	

j=tk−1

n	
i=1

1

r i
j

�
j	

l=1

ϕi
l ϕ

i
l
T −

j−1	
l=1

ϕi
l ϕ

i
l
T

�
− n Im

≥
tk	

j=tk−1

1

trR j

n	
i=1

�
j	

l=1

ϕi
l ϕ

i
l
T −

j−1	
l=1

ϕi
lϕ

i
l
T

�
− n Im

=
tk+1	

j=tk−1+1

1

trR j−1

n	
i=1

j−1	
l=1

ϕi
l ϕ

i
l
T − n Im

−
tk	

j=tk−1

1

trR j

n	
i=1

j−1	
l=1

ϕi
lϕ

i
l
T
. (45)

By the definition of λ
(k)
min in Assumption 6 and (45), we obtain

n	
i=1

tk −1	
j=tk−1

ϕi
jϕ

i
j
T

r i
j

≥
tk	

j=tk−1+1

�
1

trR j−1
− 1

trR j

� n	
i=1

j−1	
l=1

ϕi
l ϕ

i
l
T − n Im

+ 1

trRtk

n	
i=1

tk	
l=1

ϕi
l ϕ

i
l
T − 1

trRtk−1

n	
i=1

tk−1	
l=1

ϕi
lϕ

i
l
T

≥
tk	

j=tk−1+1

�
tr
�
�T

j � j


trR j trR j−1

�
n	

i=1

j−1	
l=1

ϕi
lϕ

i
l
T − (n + 1)Im

≥
tk	

j=tk−1+1

�
λ

( j−1)
min − n

m

�
·
�

tr
�
�T

j � j


trR j trR j−1

�
Im

−(n + 1)Im . (46)

Combining this with Assumption 6, we have

n	
i=1

tk−1	
j=tk−1

ϕi
jϕ

i
j
T

r i
j

+ (n + 1)Im

≥
tk	

j=tk−1+1

�
λ

( j−1)
max

N(log trR j−1)
1
3

− n

m

��
tr
�
�T

j � j


trR j trR j−1

�
Im

≥ 1

m

tk	
j=tk−1+1

�
trR j−1

N(log trR j−1)
1
3

− n

��
tr
�
�T

j � j


trR j trR j−1

�
Im

= 1

m

tk	
j=tk−1+1

�
1

N
− n(log trR j−1)

1
3

trR j−1

�

·
�

tr
�
�T

j � j


trR j (log trR j−1)
1
3

�
Im

≥ 1

2Nm

tk	
j=tk−1+1

�
tr
�
�T

j � j


trR j(log trR j−1)
1
3

�
Im

where (43) is used in the last inequality. Hence, by the
definition of dk in Lemma 15, we can obtain

n	
i=1

tk−1	
j=tk−1

ϕi
jϕ

i
j
T

r i
j

≥ dtk+1 − dtk−1+1

2Nm
Im − (n + 1)Im .

Furthermore, using Lemma 15, (39) and (44), we have

λmin

⎛⎝ tk −1	
j=tk−1

G j

⎞⎠
≥ σλmin

⎛⎝ n	
i=1

tk−1	
j=tk−1

ϕi
jϕ

i
j
T

r i
j

⎞⎠
≥ σ

2Nm
(dĝ(N1+kα)+1 − dĝ(N1+(k−1)α+1)) − σ(n + 1)

≥ σ

2Nm
(N1 + kα − (N1 + (k − 1)α + 1)) − σ(n + 1)

= σ

�
α − 1

2Nm
− (n + 1)

�
= σ. (47)

Step 3 [Estimation of λmax(
�tk−1

j=tk−1
μG j )]: By the basic

properties of the trace and the Euclidean norm of the matrix,
we have

tk−1	
j=tk−1

�A j� ≤
tk−1	

j=tk−1

tr
�
R−1

j �T
j � j

 ≤
tk−1	

j=tk−1

tr
�
�T

j � j
��R−1

j

��
≤ γ

tk−1	
j=tk−1

tr
�
�T

j � j


�R j� ≤ nγ

tk−1	
j=tk−1

tr
�
�T

j � j


trR j

≤ nγ (log trRtk−1)
1
3

tk−1	
j=tk−1

tr
�
�T

j � j


trR j (log trR j−1)
1
3

.

(48)

By the definition of dĝ(t), (39), and (48), we have

tk−1	
j=tk−1

�A j� ≤ nγ (log trRtk −1)
1
3 (dtk − dtk−1)

= nγ (log trRtk −1)
1
3 (dĝ(N1+kα) − dĝ(N1+(k−1)α))

≤ nγ (α + 1)(log trRtk−1)
1
3 .

Then combining this with (9), we have

λmax

⎛⎝ tk −1	
j=tk−1

G j

⎞⎠ ≤
tk−1	

j=tk−1

�G j� ≤ (1 + 4ν)

tk −1	
j=tk−1

�A j�

≤ nγ (1 + 4ν)(α + 1)(log trRtk−1)
1
3 . (49)
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According to (39), (42) and (44), we can see that

N1 + kα ≥ dĝ(N1+kα)

≥ 3

2nγ r∗
�

log
2
3 trRtk−1 − log

2
3 trRK0−1

�
. (50)

Using (49) and (50), we have

λ2
max

⎛⎝ tk−1	
j=tk−1

G j

⎞⎠ ≤ n2γ 2(1 + 4ν)2(α + 1)2

·
�

2nγ r∗

3
(N1 + kα) + log

2
3 trRK0−1

�
� pk = O(k). (51)

Combining this with (47) yields

∞	
k=1

λmin

��tk −1
j=tk−1

μG j

�
1 + λ2

max

��tk−1
j=tk−1

μG j

� ≥
∞	

k=1

μσ

1 + μ2 pk
= ∞. (52)

According to Lemma 29, we can see that �(k, 0) → 0 as
k → ∞. This completes the proof of the theorem. �

APPENDIX C
PROOF OF LEMMA 23

Proof: By the definition of �(k, j) in (7), it is clear that
we have 1).

Using Lemma 22, we have

det �(k + 1, 0)

=
k%

j=0

det(Imn − μG j ) ≥
k%

j=0

(det(Imn − A j))
τ1

= (det(Imn − A0))
τ1

⎛⎝ n%
i=1

k%
j=1

r i
j−1

r i
j

⎞⎠τ1

= (det(Imn − A0))
τ1

n%
i=1

1

(r i
k)

τ1

= 1

det
�
Rτ1

k

 n%
i=1

�
1 − ��ϕi

0

��2τ1

≥ 1

�Rk�nτ1

n%
i=1

�
1 − ��ϕi

0

��2τ1 . (53)

Therefore, we have�
1

�Rk�nτ1

n%
i=1

�
1 − ��ϕi

0

��2τ1

�2

≤ det(�(k + 1, 0)�T (k + 1, 0)) ≤ ��(k + 1, 0)�2mn .

Since the initial value ϕi
0 can be arbitrarily selected, without

loss of generality we suppose �ϕ i
0� �= 1 for all i ∈ {1, . . . , n}.

It is clear that 2) of the lemma holds.
Using Lemma 22, we have

��(k, j + 1)�
≤ ��(k, 0)���−1( j + 1, 0)�

≤ ��(k, 0)�
j+1%
p=1

�(Imn − μG p−1)
−1�

≤ ��(k, 0)�
j+1%
p=1

det
�
(Imn − μG p−1)

−1


≤ ��(k, 0)�
j+1%
p=1

1�
det(Imn − Ap−1)

τ1

= ��(k, 0)�
�

1

det(Imn − A0)

�τ1 n%
i=1

j+1%
p=2

�
r i

p−1

r i
p−2

�τ1

= ��(k, 0)� ·
�

1

det(Imn − A0)

�τ1
�

n%
i=1

r i
j

�τ1

≤
�

1

det(Imn − A0)

�τ1

· ��(k, 0)� · �R j�nτ1 . (54)

Hence, 3) of the lemma can be proved.
Now we will prove 4).

∞	
j=M+1

�� j�2

�R j�1+ς
≤

∞	
j=M+1

tr
�
�T

j � j


1
n1+ς (trR j)1+ς

= n1+ς
∞	

j=M+1

$ trR j

trR j−1

1

(trR j)1+ς
dt

≤ n1+ς
∞	

j=M+1

$ trR j

trR j−1

1

t1+ς
dt

≤ n1+ς

$ ∞

trRM

1

t1+ς
dt

= n1+ς

ς

1

(trRM)ς
≤ n1+ς

ς

1

�RM�ς
.

This completes the proof of the lemma. �

APPENDIX D
PROOF OF THEOREM 25

Proof: Using (47) and (51) in Appendix B, there exists a
constant c∗ > 0 such that

λmin

��tk−1
j=tk−1

μG j

�
1 + λ2

max

��tk−1
j=tk−1

μG j

� ≥ c∗

1 + k

where tk is defined in (44) of Appendix B. In fact, since
μ(1 + 4ν) < 1, we can take

c∗ = μσ

1 + [nγ (α + 1)]2 max
!

2nγ r∗α
3 , 2nγ r∗ N1

3 + log
2
3 trRK0−1

"
with α = 2Nm(n + 2) + 1, N1 ∝ n, where σ =
((l2

m+1aν)/(2n + l2
m+1aνn)), and γ and r∗ are, respectively,

defined in Lemma 13 and Theorem 17.
Using Lemma 28, we have

��(tk, tk−1)� ≤

⎛⎜⎜⎝1 −
λmin

��tk−1
j=tk−1

μG j

�
2

�
1 +

��tk−1
j=tk−1

�μG j�
�2

�
⎞⎟⎟⎠

1
2
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≤
⎛⎝1 −

λmin

��tk−1
j=tk−1

μG j

�
2
�

1 + m2n2λ2
max

��tk−1
j=tk−1

μG j

��
⎞⎠

1
2

≤
⎛⎝1 −

λmin

��tk−1
j=tk−1

μG j

�
2m2n2

�
1 + λ2

max

��tk−1
j=tk−1

μG j

��
⎞⎠

1
2

≤
�

1 − c̄

1 + k

� 1
2

�
c̄ = c∗

2m2n2

�
. (55)

By the definition of tk in (44), we have the following
estimate about ��(ĝ(N1 + jα), 0)� with N1 and α defined
in Appendix B

��(ĝ(N1 + jα), 0)�

≤
j%

l=1

��(ĝ(N1 + lα), ĝ(N1 + (l − 1)α)�
· ��(ĝ(N1), 0)�

≤
j%

l=1

�
1 − c̄

1 + l

� 1
2

≤
j%

l=1

e− c̄
2(1+l)

= e−� j
l=1

c̄
2(1+l) ≤ e

− c̄
2 ·log

�
j+2
2

�
=

�
j + 2

2

�− c̄
2

(56)

where the inequalities 1 − x ≤ e−x for all x ≥ 0 and�k
j=1(1/(1 + j)) ≥ log((k+2)/2) for all k ≥ 1 are used.
Since ĝ(t) → ∞ as t → ∞ in (40), then for any k ≥

ĝ(N1 + α), there exists j ≥ 1 such that

ĝ(N1 + jα) ≤ k ≤ ĝ(N1 + ( j + 1)α).

By the monotonicity of dk and (39), we have

dk ≤ dĝ(N1+( j+1)α) ≤ N1 + ( j + 1)α.

Thus, j ≥ ((dk − N1 − α)/α). According to (56), we obtain

��(k, 0)�
≤ ��(k, ĝ(N1 + jα))� · ��(ĝ(N1 + jα), 0)�
≤ ��(ĝ(N1 + jα), 0)� ≤

�
dk − N1 + α

2α

�− c̄
2

. (57)

Combining (42) with (57), we have for large k

��(k, 0)� = O(log trRk−1)
− c̄

3 = O(log trRk)
− c̄

3 .

Hence using Lemma 24, we have ���k� = O((log �Rk�)−δ1)
with δ1 = (δc̄/(3nτ1(1 + δ))) = (δc∗/(6m3n4(1 + δ))). �
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