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Two-Layer Diffusion Adaptive Filters Over
Directed Markovian Switching Networks

Siyu Xie , Die Gan , Member, IEEE , and Zhixin Liu , Member, IEEE

Abstract—We consider the problem of distributed adap-
tive filtering in this letter, where a set of nodes in the
network is required to estimate an unknown parameter of
interest from noisy measurements cooperatively. Based on
normalized least mean squares (NLMS) adaptive filters, we
focus on a two-layer diffusion strategy to diffuse data more
thoroughly. We propose and analyze the two-layer diffu-
sion NLMS algorithm, where the communications between
nodes in the network are described by directed Markovian
switching graphs. The directed graphs are not only used
for the combination of local estimates but also used for
the adaptation step in the two-layer strategy. The stability
results of the proposed two-layer diffusion adaptive filters
are established under a general cooperative information
assumption, without independence and stationarity sig-
nal conditions which were widely used in the literature.
Moreover, the stability result indicates that even if any node
cannot estimate the unknown parameter individually, the
whole network can still fulfill the estimation task through
communications. Simulation results also show that the
proposed two-layer diffusion NLMS algorithm has better
performance compared with the consensus one.

Index Terms—Distributed adaptive filtering, Markovian
switching networks, two-layer diffusion strategy, stability.

I. INTRODUCTION

D ISTRIBUTED adaptive estimation problems have
attracted increasing research attention recently, where

the nodes in the network can be utilized to estimate or
track a dynamic process of interest from noisy measurements
cooperatively by sharing information with their neighbors
through the network topology. Another solution to the
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estimation problem in the network is called the centralized
method, in which all the nodes will send their information to
a fusion center for data processing. The centralized method
has the disadvantage of being non-robust to failure of the
fusion center. Moreover, since at every time instant, all the
nodes need to send data to the fusion center, the centralized
method may require large amounts of communication and
energy resources, and may suffer from serious data packet
loss problem if some nodes are far away from the fusion
center. In comparison, the distributed solution with in-network
processing can save resources and is more robust to node and
link failures in the network.

There are two main fully distributed strategies introduced
and used in the literature, i.e., consensus [1], [2], [3], [4],
[5], [6] and diffusion [7], [8], [9], [10], [11], [12], [13]
strategies. Diffusion solutions may have better performance
compared with consensus ones since data can be diffused more
thoroughly in the network. Here in this letter, we consider
one general class of diffusion least mean squares (LMS)
algorithms for a stochastic time-varying linear regression
model, which is a simplified system model compared with the
linear system model considered in, e.g., [14], [15]. However,
the observation vector in our model is stochastic, while
most literature including [14], [15] considered deterministic
observation vectors or matrices. Note that the signals are often
stochastic since they are generated from dynamic systems
affected by noises, and the linearized observation matrices
in the extended Kalman filters are also stochastic, which are
widely used to estimate the state of nonlinear engineering
systems. There are many existing researches about the analysis
of the diffusion LMS algorithms in the literature [8], [9],
[10], [11], [12] to consider the stochastic regression vectors.
However, almost all the existing theoretical analysis require
independence and/or stationarity conditions of the system
signals, which are not applicable to the signals generated from
feedback systems.

In comparison to our prior work on the diffusion LMS
algorithms [12], the current paper studies a more general
class of diffusion strategies introduced in [7] of which [8],
[9], [10], [11], [12] are some special cases, namely, a two-
layer diffusion strategy. We subsequently establish the stability
and performance of this two-layer diffusion adaptive filters
under non-independent and non-stationary signal conditions,
and show that even if any individual sensor cannot fulfill
the estimation task, the whole network can still estimate
the unknown parameter cooperatively. Moreover, our recent
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work on diffusion LMS algorithms [12] focused on undirected
and fixed communication networks. However, due to random
failures and recoveries of links between sensors in practical
applications, the network topologies may be randomly chang-
ing over time, which are usually modeled as an i.i.d. or a
Markovian switching system [2], [3], [13]. Since in practice
the randomly switching topologies are usually temporally
correlated, we have consider directed Markovian switching
communication topologies in this letter, which makes our
theoretical results more general.

Compared with [6], one of the main contributions is that the
random matrix analyzed in this letter is no longer symmetric
which increases the difficulty for analysis. Also, the two-layer
diffusion strategy cannot only use the estimated values of
the neighbors, but also use their observed values to improve
the accuracy of estimation. Therefore, the convergence rate is
faster since the data may diffuse more thoroughly in the two-
layer diffusion strategy which can be seen from the simulation
results.

The remainder of this letter is organized as follows.
In Section II, we introduce the problem formulation. In
Section III, we establish the stability result of the proposed
two-layer diffusion algorithms under some mild signal
assumption. Finally, we provide some simulation results in
Section IV, and conclude this letter with some remarks in
Section V.

II. PROBLEM FORMULATION

A. Graph Theory

We consider a network with n nodes and the communi-
cations among sensors are modeled as a weighted digraph
G = (V, EG), where V = {1, 2, . . . , n} is the set of vertexes,
and EG ⊆ V × V is the set of directed arrows. An arrow
(i, j) is considered to be directed from i to j, where j is
called the head and i is called the tail of the arrow. In the
estimation process, node i can obtain local estimate and local
observation information from its in-neighbors through graph
G. The associated weighted adjacency matrix AG = {aij

G}n×n is
used to describe the structures of the corresponding digraph G,
where aij

G > 0 if the arrow (i, j) ∈ EG , and aij
G = 0 otherwise.

In this letter, we assume that the elements of the weighted
matrix AG satisfy

∑n
j=1 aji

G = 1,∀i = 1, . . . , n. Note that
matrix AG maybe asymmetric. Also, the matrix G is called a
balanced digraph, if

∑n
j=1 aij

G =∑n
j=1 aji

G = 1,∀i = 1, . . . , n.
The set of in-neighbors of node i in graph G is denoted

as N i
G = { j ∈ V|( j, i) ∈ EG}, and any in-neighboring nodes

of i have the ability to transmit information over the directed
arrows to node i. The Laplacian matrix of the directed graph
G is defined as LG = In − AG , where In denotes the n-
dimensional identity matrix. From [18], we know that the
smallest eigenvalue of the matrix LG always equals zero,
with 1√

n
1�

n being the corresponding normalized eigenvector. A
sequence of edges (i, i1), (i1, i2), . . . , (ik−1, j) is called a path
from i to j. The graph G is called strongly connected if for
any i, j ∈ V , there is a path from i to j. In addition, if the
directed graph contains a spanning tree, the matrix LG has
only one zero eigenvalue with other eigenvalues have positive
real parts.

For a given integer k > 0, by the union of a collection
of digraphs {Gj = (V, EGj ,AGj), j = 1, . . . , k}, means the

digraph
∑k

j=1 Gj with the vertex set V , the edge set ∪k
j=1EGj

equalling to the union of the edge sets of all the digraphs in the
collection, and the corresponding adjacency matrix becomes
1
k

∑k
j=1 AGj .

B. Observation Model

Assume that at each time instant k, each node i (i ∈
{1, . . . , n}) in the network receives a noisy scalar measurement
yi

k and an regressor ϕi
k ∈ R

m. They are related by a stochastic
time-varying linear regression model

yi
k = (ϕi

k

)�
θk + vi

k, k ≥ 0, (1)

where vi
k is the scalar stochastic noise, and θk ∈ R

m is
an unknown time-varying signal vector which needs to be
estimated. Note that the variation of the unknown parameter
θk at time k can be denoted by �θk, i.e.,

�θk

= θk − θk−1, k ≥ 1. (2)

For every node i in the network, the objective is to use
the data {yi

k,ϕ
i
k} to track the unknown parameter vector θk.

Many problems from different application areas, such as target
localization, collaborative spectral sensing, signal processing
and so on, can be cast as the observation model (1), see [16].
It can also include the well-known ARX model [17] with
time-varying coefficients, which is widely used to analyze and
predict the trend of time series data in many fields such as
control systems, economics and finance systems.

Here in this letter, we assume that the ideal network graph
is G = (V, EG,AG). Since some edges in the network are
failure-prone with positive probability, we will use a Markov
chain mji

k with the state space {0, 1} to denote the evolution
of the failure-prone edge ( j, i) ∈ EG , where state “0” means
that the communication from j to i is lost, while “1” means that
the communication is normal. Let us make a fixed ordering
for all the edges in EG , and we assume that the number of all
the failure-prone edges is nG . Then the Markov chain of all
the failure-prone edges can be denoted as a vector mk ∈ R

nG

with 0 or 1 as its element, which has a finite state space S .
Label the states of S in sequence as a set I = {1, 2, . . . , s},

where s = 2nG , corresponding to the communication topology
graph set {G(1), . . . ,G(s)}, where G(t) = (V, EG(t) ,AG(t) ) is
a digraph. Without loss of generality, we assume the first
state is [1, . . . , 1]�, which means that G(1) = G. Denote the
Markovian communication graph at time k by Gk, and the
random process mk completely describes dynamic changes of
the communication topology.

C. Two-Layer Diffusion Adaptive Filtering Algorithm

In the following, we present the two-layer combine-then-
adapt (CTA) diffusion strategy based on NLMS algorithms to
estimate θk in a cooperative way (see Algorithm 1), where
the directed graphs are not only used for the combination of
local estimates but also used for the adaptation step. Thus, the
two-layer diffusion strategy can diffuse data more thoroughly
compared with the traditional diffusion one [12].

We introduce the following notations for the analysis:

Yk

= col{y1

k, . . . , yn
k}, �k


= diag{ϕ1
k, . . . ,ϕ

n
k},
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Algorithm 1 Two-Layer CTA Diffusion NLMS Algorithm
For any given node i (i ∈ {1 . . . , n}), begin with an initial
estimate θ̂

i
0. The algorithm is recursively defined for iteration

k ≥ 0 as follows, and μ ∈ (0, 1) is the step size:
1. Combine local estimates:

̂β
i
k =

∑

j∈N i
Gk

aji
Gk

̂θ
j
k,

2. Adapt the local estimates:

̂θ
i
k+1 = ̂β

i
k + μ

∑

j∈N i
Gk

aji
Gk

ϕ
j
k

1+ ‖ ϕ
j
k ‖2

[y j
k − (ϕ

j
k)

�
̂β

j
k].

Lk

= diag

{
ϕ1

k

1 + ‖ϕ1
k‖2

, . . . ,
ϕn

k

1 + ‖ϕn
k‖2

}

,

Fk

= Lk�

�
k , Vk


= col{v1
k, . . . , vn

k},
��k


= col{�θk, . . . ,�θk︸ ︷︷ ︸
n

}, �k

= col{θk, . . . , θk︸ ︷︷ ︸

n

},

�̂k

= col{̂θ1

k, . . . , θ̂
n
k}, B̂k


= col{β̂1
k, . . . , β̂

n
k},

�̃k

= col{̃θ1

k, . . . , θ̃
n
k}, where θ̃

i
k = θ̂

i
k − θk,

A Gk


= AGk ⊗ Im, L Gk


= LGk ⊗ Im.

By (1) and (2), we have the vector form model Yk =
��

k �k + Vk, and ��k+1 = �k+1 − �k. For the two-layer
CTA diffusion NLMS algorithm, we have B̂k = A �

Gk
̂�k and

̂�k+1 = B̂k +μA �
Gk

Lk(Yk −��
k B̂k). Denote �̃k = �̂k −�k,

we can get

�̃k+1 = A �
Gk

�̂k − �k − ��k+1

+ μA �
Gk

Lk

[
��

k �k + Vk − ��
k A �

Gk
�̂k

]
,

=
(

Imn − μA �
Gk

Fk

)
A �

Gk
�̃k + μA �

Gk
LkVk − ��k+1

=
(

Imn −
[
μA �

Gk
Fk + L �

Gk
− μA �

Gk
FkL

�
Gk

])
�̃k

+ μA �
Gk

LkVk − ��k+1, (3)

which will be analyzed in the following section. The random
matrix μA �

Gk
Fk +L �

Gk
−μA �

Gk
FkL

�
Gk

involved here may be
non-symmetric, non-independent and non-stationary. In order
to show stability properties of (3), we divide the problem
into two steps: (1) Analyzing the exponential stability of the
homogeneous part Imn − [μA �

Gk
Fk + L �

Gk
− μA �

Gk
FkL

�
Gk

]
of (3); (2) Analyzing the cumulative effects of the noise Vk and
the parameter variation ��k+1. The details will be provided
in Theorems 1 and 2.

III. STABILITY ANALYSIS

A. Definitions

For a matrix X ∈ R
m×n, ‖X‖ = (λmax{XX�}) 1

2 denotes
the spectral norm, and λmax{·} denotes the largest eigenvalue.

Also, for a random matrix Y , ‖Y‖Lp = {E[‖Y‖p]} 1
p denotes

the Lp-norm, and E[ · ] denotes the mathematical expectation
operator. We need the following definitions for the (exponen-
tial) stability introduced in [19].

Definition 1: For a sequence of d×d random matrices A =
{Ak, k ≥ 0}, if sequence A belongs to the following set

Sp(λ) =
{

A :

∥
∥
∥
∥

k∏

j=i+1

(
Id − Aj

)
∥
∥
∥
∥

Lp

≤ Mλk−i,

∀k ≥ i + 1,∀i ≥ 0, for some M > 0

}

, (4)

then {Id − Ak, k ≥ 0} is called Lp-exponentially stable (p ≥ 0)

with parameter λ ∈ [0, 1).
For convenience of discussions, we introduce the following

subclass of S1(λ) for a scalar sequence.
Definition 2: For a scalar sequence a = {ak, k ≥ 0}, define

S0(λ) class as follows

S0(λ) = {a : ak ∈ [0, 1],E

[ k∏

j=i+1

(
1 − aj

)
]

≤ Mλk−i,

∀k ≥ i + 1,∀i ≥ 0, for some M > 0
}
, (5)

where λ ∈ [0, 1).
Note that if the scalar random sequence a is uniformly

bounded from below by a positive constant, then obviously it
belongs to S0(λ) class.

Definition 3: For a random matrix sequence {Ak, k ≥ 0}
defined on the basic probability space (�,F , P), if
supk≥0 E[‖Ak‖p] < ∞ holds for some p > 0, then {Ak} is
called Lp-stable.

B. Assumptions

In the theoretical analysis, we also need the following
assumptions on the graph G and the regressors.

Assumption 1 (Network Topology Assumption):
A1) The all digraphs G(t), 1 ≤ t ≤ s, are balanced.
A2) The union of the communication topology set C =

{G(t), 1 ≤ t ≤ s}, which is denoted by GC , contains a spanning
tree.

A3) {mk, k ≥ 0} is a homogeneous ergodic Markov
chain with the transition probability matrix [pij]1≤,i,j≤s, where
pij = P{mk+1 = j|mk = i, m0, . . . , mk−1,ϕ

l
t,�θ t, vl

t, l =
1, . . . , n, t ≤ k}.

A4) There exists a constant c ∈ (0, 1) such that LG(t)L�
G(t) ≤

(1 − c)(LG(t) + L�
G(t) ), a.s., 1 ≤ t ≤ s.

Remark 1: Since the digraph G(t) is balanced, then the
adjacency matrix AG(t) is doubly stochastic. Hence, 1

2 (AG(t) +
A�
G(t) ) is also symmetric and doubly stochastic, which means

that the corresponding mirror graph is undirected. Then, we
know that all the eigenvalues of the Laplacian matrix of
the mirror graph, i.e., 1

2 (LG(t) + L�
G(t) ), are non-negative and

real (less than 2). A2) is a joint connectivity condition on
the communication topology. Intuitively, it means that if the
communication connectivity relation among the sensors visits
all digraphs of C in a certain time interval, then for any
pair of sensors i and j, sensor i can influence sensor j in
this time interval only by local interactions among sensors.
A3) is on the ergodicity of the Markovian random switches
of communication topologies. From Markov chain theory, a
discrete time Markov chain with finite states is ergodic if and
only if it is irreducible and aperiodic. Note that we need the
above inequalities in A4) for our theoretical analysis, which
is a requirement on the network topology.
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The following assumption is a suitable generalization of the
excitation condition used in [19] from single sensor to sensor
networks.

Assumption 2 (Cooperative Information Assumption): Let
{ϕi

k,Fk, k ≥ 0}, i = 1, . . . , n, be n adapted sequences and
there exists an integer h > 0 such that {λk, k ≥ 0} ∈ S0(λ)

class for some λ ∈ (0, 1), where λk is defined by

λk

= λmin

⎧
⎪⎨

⎪⎩
E

[
1

n(h + 1)

n∑

i=1

k+h∑

j=k+1

ϕi
j

(
ϕi

j

)�

1 + ‖ϕi
j‖2

∣
∣
∣Fk

]
⎫
⎪⎬

⎪⎭
,

where E[ · |Fk] is the conditional mathematical expectation
operator and Fk = σ {ϕi

j,ωj, vi
j−1, i = 1, . . . , n, j ≤ k}.

Remark 2: We remark that the assumption on the condi-
tional mathematical expectation in Assumption 2 implies that
the system signals will have some kind of “persistent excita-
tions” since the prediction of the “future” is non-degenerate
given the “past”, which is required to track constantly chang-
ing unknown signals. Moreover, under Assumption 2, the
two-layer diffusion filtering network can be shown to fulfill
the estimation task cooperatively even if any individual filter
cannot, which is a natural property for distributed filters.

C. Stability Results

Denote Ak = μA �
Gk

Fk+L �
Gk

−μA �
Gk

FkL
�
Gk

as the random
matrix in the error equation. Now, we are in the position to give
our first main result on stability. Since the network topology
is directed and Markovian switching, the key difficulty is to
establish the exponential stability under the assumption that
the matrix Ak is non-symmetric, non-independent and non-
stationary compared with [6].

Theorem 1: Consider the model (1) and the estimation error
equation (3). Suppose that Assumptions 1 and 2 are satisfied.
Then for any p ≥ 1, there exists a constant μ∗ ∈ (0, 1),
such that for all μ ∈ (0, μ∗], {Imn − [μA �

Gk
Fk + L �

Gk
−

μA �
Gk

FkL
�
Gk

], k ≥ 1} is Lp-exponentially stable.
Remark 3: The detailed proof of Theorem 1 is given in the

next section, and by Theorem 1, we can obtain a preliminary
tracking error bound in the following theorem.

Theorem 2: Consider the model (1) and the estimation error
equation (3). Suppose that Assumptions 1 and 2 are satisfied.

If for some p ≥ 1 and β > 1, σp

= supk ‖ξk logβ(e + ξk)‖Lp

< ∞, hold, where ξk = ‖Vk‖ + ‖��k+1‖, then for
Algorithm 1 with any initial estimate satisfies ‖�̃0‖Lp < ∞,
there exists a constant μ∗ ∈ (0, 1), such that for all μ ∈
(0, μ∗], {�̃k, k ≥ 1} is Lp-stable and

lim sup
k→∞

‖�̃k‖Lp ≤ c
[
σp log

(
e + σ−1

p

)]
, (6)

where c is a positive constant.
Remark 4: Since the upper bound for the error can be

derived in a similar way as that of [19, Th. 4.2], details
will be omitted here. Intuitively, by Theorem 2 we know that
when both the noise and the parameter variation are small,
the processes ξk and σp will also be small, and hence the
parameter tracking error �̃k will be small too. Here we only
require that the observation noise and the parameter variation

satisfy a moment condition, and no Gaussian, independent,
and stationary properties is required in this letter.

D. Proof of Theorem 1

We first prove that the random matrices Ak satisfy the
inequality restriction in [12, Lemma 5.8].

Lemma 1: Under Assumption 1, there exist constants μ∗ ∈
(0, 1) and ε ∈ (0, 1), such that for any μ ∈ (0, μ∗],

A�
k Ak ≤ (1 − ε)

(
Ak + A�

k

)
, a.s. (7)

Proof: For simplicity, we omit the subscript k, Gk, the
dimension mn, and a.s. for sample paths hereafter. We have

A�A = μ2FAA �F + LL � + μ2L FAA �FL �

+ μFAL � + μLA �F

− μ2FAA �FL � − μ2L FAA �F

− μLA �FL � − μL FAL �.

Also, we have A+A� = 2μF+L +L � −μL �F−μFL −
μL F − μFL � + μL �FL � + μL FL .

By Assumption 1, denote μ1 = √
c/2, since 0 ≤ F ≤ I,

then for any μ ∈ (0, μ1], we have

μ2FAA �F + LL � + μ2L FAA �FL �

≤ μ2F2 + LL � + μ2LL �

≤ μ2F + (1 − c)
(
L + L �)+ μ2(1 − c)

(
L + L �)

≤ μ2F + (1 − c)
(
L + L �)+ μ2

(
L + L �)

≤
(

1 − c

4

)(
2μF + L + L �)− c

4

(
2μF + L + L �).

Now we choose ε = c/4 and denote

G

= μ

(
FAL � + LA �F

)

− μ2
(

FAA �FL � + L FAA �F
)

− μ
(
LA �FL � + L FAL �)

+ μ(1 − ε)
(
L �F + FL

)
+ μ(1 − ε)

(
L F + FL �)

− μ(1 − ε)
(
L �FL � + L FL

)
. (8)

Then to prove (7), we need only to prove that there exists a
constant μ∗ ∈ (0, 1), such that for any μ ∈ (0, μ∗],

G ≤ ε
(

2μF + L + L �). (9)

In fact, for any mn-dimensional unit column vector x with
‖x‖ = 1, we have by noting ‖F‖ ≤ 1, ‖A ‖ ≤ 1,

x�Gx

≤ 2μ‖x�F‖ · ‖A ‖ · ‖L �x‖
+ 2μ2‖x�F‖ · ‖A ‖ · ‖A �‖ · ‖F‖ · ‖L �x‖
+ 2μ‖x�L ‖ · ‖A �‖ · ‖F‖ · ‖L �x‖
+ 2μ(1 − ε)‖x�F‖ · ‖L x‖ + 2μ(1 − ε)‖x�F‖ · ‖L �x‖
+ 2μ(1 − ε)‖x�L ‖ · ‖F‖ · ‖L x‖

≤
(

2μ(2 − ε) + 2μ2
)
‖x�F

1
2 ‖ · ‖L �x‖

+ 2μ‖x�L ‖ · ‖L �x‖ + 2μ(1 − ε)‖x�F
1
2 ‖ · ‖L x‖

+ 2μ(1 − ε)‖x�L ‖ · ‖L x‖
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≤
[√

μ

2
(2 − ε) +

√

μ3

2

](
2
√

2μ‖x�F
1
2 ‖ · ‖L �x‖

)

+ μ
(

2‖x�L ‖ · ‖L �x‖
)

+
√

μ

2
(1 − ε)

(
2
√

2μ‖x�F
1
2 ‖ · ‖L x‖

)

+ μ(1 − ε)
(

2‖x�L ‖ · ‖L x‖
)

≤
[√

μ

2
(3 − 2ε) +

√

μ3

2

]

x�(2μF)x

+
[√

μ

2
(3 − 2ε) +

√

μ3

2
+ 2μ(2 − ε)

]

· x�(L + L �)x. (10)

Here if we choose μ to satisfy
⎧
⎪⎪⎨

⎪⎪⎩

√
μ
2 (3 − 2ε) ≤ c

8 ,

√
μ3

2 ≤ c
8 ,

√
μ
2 (3 − 2ε) ≤ c

12 ,

√
μ3

2 ≤ c
12 ,

2μ(2 − ε) ≤ c
12 ,

then (9) holds. Hence, we can choose

μ∗ = min

{
c2

18(6 − c)2
,

3

√
c2

72
,

c

6(8 − c)

}

, (11)

where c ∈ (0, 1) is a constant which is related to the Laplacian
matrix of the network graph. Consequently, there exists a
constant μ∗ ∈ (0, 1) such that for any μ ∈ (0, μ∗], (7) holds.
This completes the proof.

To accomplish the proof of Theorem 1, we also need the
following lemma.

Lemma 2: Suppose that Assumptions 1 and 2 are satisfied,
then there exist constants μ∗ ∈ (0, 1) and ε ∈ (0, 1), such that
for any μ ∈ (0, μ∗], γk ∈ S0(γ ), where

γk

= λmin

{

E

[
1

1 + 4(1 − ε)h

k+h∑

j=k+1

(
Aj + A�

j

)∣
∣
∣Fk

]}

, (12)

and γ = λν, ν = h�m+1μ

(2+�m+1)(1+h)[1+4(1−ε)h] , where �m+1 > 0

is the (m + 1)th smallest eigenvalue of matrix E[ 1
2 (L Gk +

L �
Gk

)|Fk] and μ∗ is defined by (13).
Proof: By Lemma 1, we know that there exists constants

μ∗ which is defined in (11) and ε = c/4, such that for any
μ ∈ (0, μ∗], (7) holds. Then by [12, Lemma 5.5], we know
that for any μ ∈ (0, μ∗], γk ∈ [0, 1] holds. By the notations
in Lemma 1, we then have Aj + A�

j = 2μFj + L Gj + L �
Gj

−
μL �

Gj
Fj − μFjL Gj − μL GjFj − μFjL

�
Gj

+ μL �
Gj

FjL
�
Gj

+
μL GjFjL Gj . Similar to the proof of Lemma 1, we have

μL �
Gj

Fj + μFjL Gj + μL GjFj + μFjL
�
Gj

− μL �
Gj

FjL
�
Gj

− μL GjFjL Gj

≤
√

μ

2

(
2μFj + L Gj + L �

Gj

)
+
√

μ

2

(
2μFj + L Gj + L �

Gj

)

+ μ
(
L Gj + L �

Gj
+ L Gj + L �

Gj

)

≤ 5

√
μ

2

(
2μFj + L Gj + L �

Gj

)
.

Then we can obtain

Aj + A�
j ≥

(

1 − 5

√
μ

2

)(
2μFj + L Gj + L �

Gj

)

≥
(

1 − 5

√
μ

2

)

μ
(

2Fj + L Gj + L �
Gj

)
.

Here we choose μ to satisfy 5
√

μ
2 ≤ 0.5, then there exists

a new μ∗ satisfying

μ∗ = min

{
c2

18(6 − c)2
,

3

√
c2

72
,

c

6(8 − c)
,

1

50

}

, (13)

such that for any μ ∈ (0, μ∗], Aj + A�
j ≥ 0.5μ(2Fj + L Gj +

L �
Gj

). Denote

ρk

= λmin

{

E

[

a
k+h∑

j=k+1

(

Fj + 1

2
(L Gj + L �

Gj
)

)∣
∣
∣Fk

]}

.

where a = μ
1+4(1−ε)h . Since 0 ≤ ρk ≤ γk ≤ 1, we know that

to prove (12), we need only to prove ρk ∈ S0(λν).
By Assumption 1, there exists an integer q such that for

any initial time k ≥ 0 and initial state, the Markov chain
mt will visit all its states in the time interval [k, k + q]
with positive probability p0 > 0, which does not depend
on time instant k. Here we assume that h ≥ q. Since the
communication topology is balanced and connected, we know
that E[

∑k+h
j=k+1

1
2 (LGj +L�

Gj
)|Fk] has only one zero eigenvalue

whose unit eigenvector is 1√
n
(1, . . . , 1)�, i.e., 1√

n
1 where

1 = (1, . . . , 1)�n×1. Correspondingly, E[
∑k+h

j=k+1
1
2 (L Gj +

L �
Gj

)|Fk] has m zero eigenvalues, and the other eigenvalues

of E[
∑k+h

j=k+1
1
2 (L Gj +L �

Gj
)|Fk] are �m+1 ≤ · · · ≤ �mn whose

orthogonal unit eigenvectors are denoted as ξm+1, . . . , ξmn
correspondingly.

The following proof is similar to [12, Lemma 5.10], then
we can obtain that {ρk} ∈ S0(ρ), where ρ = λν .

Proof of Theorem 1: By Lemmas 1 and 2, we know that there
exists a constant μ∗ ∈ (0, 1), such that for any μ ∈ (0, μ∗]
{μA �

Gk
Fk + L �

Gk
− μA �

Gk
FkL

�
Gk

} ∈ Sp(γ
α), where and

α =
{

ε

8h[1+4(1−ε)h]2 , 1 ≤ p ≤ 2;
ε

4h[1+4(1−ε)h]2p
, p > 2.

(14)

Then by Definition 1, it is obvious that {Imn − (μA �
Gk

Fk +
L �

Gk
− μA �

Gk
FkL

�
Gk

), k ≥ 1} is Lp-exponentially stable
(p ≥ 1).

IV. SIMULATION RESULTS

We take n = 3 for example. The state space of mk is S =
{1, 2, 3}, and transition probability matrix is taken as

P =
⎛

⎝
0.2 0.3 0.5
0.5 0.1 0.4
0.6 0.2 0.2

⎞

⎠,
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Fig. 1. Tracking errors of the three sensors with γ=0.1.

where each state stands for the following adjacency matrices

AG(1) =
⎛

⎝
1/3 1/3 1/3
1/6 2/3 1/6
1/2 0 1/2

⎞

⎠,AG(2) =
⎛

⎝
1 0 0
0 1/2 1/2
0 1/2 1/2

⎞

⎠,

AG(3) =
⎛

⎝
1/2 1/2 0
1/2 1/2 0
0 0 1

⎞

⎠,

then the corresponding digraphs G(t), t = 1, 2, 3 satisfy
Assumption 1.

We will estimate or track an unknown 3-dimensional signal
θk with �θk = γωk in (2), where γ = 0.1 and the parameter
variation ωk ∼ N(0, 0.1, 3, 1) (Gaussian distribution). In both
cases, the observation noises {vi

k, k ≥ 1, i = 1, 2, 3} are inde-
pendent and identically distributed with vi

k ∼ N(0, 0.1, 1, 1)

in (1), where ϕi
k(i = 1, 2, 3) are generated by a state space

model in [12]. Then Assumption 2 is satisfied with h = 2.
For numerical simulations, let θ0 = (1, 1, 1)�, θ̂

i
0 =

(0, 0, 0)�(i = 1, 2, 3), μ = 0.8. Here we repeat the simulation
for m = 500 times with the same initial states. Then for sensor
i (i = 1, 2, 3), we can get m sequences {‖θ̂ i,j

k − θ
j
k‖2, k =

1, 2, . . . , 400} ( j = 1, . . . , m), where the superscript j denotes

the j-th simulation result. We use 1
m

∑m
j=1 ‖θ̂ i,j

k − θ
j
k‖2 (i =

1, 2, 3, k = 1, 2, . . . , 400) to denote the tracking errors of the
three sensors in Fig. 1.

In Fig. 1, the upper one is the individual situation in
which the tracking errors of the three sensors keep large, and
the middle and lower ones are the distributed situation in
which all the tracking errors converge nicely as k increases.
This indicates that even if any node cannot estimate the
unknown parameter individually, the tracking task can still be
fulfilled through local communications among nodes in the
network. Also, compared with the consensus NLMS algorithm,
the convergence rate is faster since the data diffuse more
thoroughly in the two-layer diffusion strategy.

V. CONCLUDING REMARKS

This letter has analyzed a general class of two-layer dif-
fusion adaptive filtering algorithms over directed Markovian
switching graphs, which are used for local estimate and mea-
surement information communications. We have established

the stability analysis under a general cooperative information
assumption on the system regressors, without independence
and stationarity considerations. Our main results also demon-
strate that the two-layer diffusion NLMS filters studied in
this letter can track a dynamic process of interest from noisy
measurements by a set of sensors working cooperatively, in the
natural scenario where any sensor cannot fulfill the estimation
task individually.
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