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Abstract In this paper, the authors consider a sparse parameter estimation problem in continuous-

time linear stochastic regression models using sampling data. Based on the compressed sensing (CS)

method, the authors propose a compressed least squares (LS) algorithm to deal with the challenges of

parameter sparsity. At each sampling time instant, the proposed compressed LS algorithm first com-

presses the original high-dimensional regressor using a sensing matrix and obtains a low-dimensional

LS estimate for the compressed unknown parameter. Then, the original high-dimensional sparse un-

known parameter is recovered by a reconstruction method. By introducing a compressed excitation

assumption and employing stochastic Lyapunov function and martingale estimate methods, the authors

establish the performance analysis of the compressed LS algorithm under the condition on the sampling

time interval without using independence or stationarity conditions on the system signals. At last, a

simulation example is provided to verify the theoretical results by comparing the standard and the

compressed LS algorithms for estimating a high-dimensional sparse unknown parameter.

Keywords Compressed excitation condition, compressed sensing, continuous-time model, least squares,

linear stochastic regression, parameter identification, sampling data.

1 Introduction

Parameter estimation problem has attracted much attention in many research areas, e.g.,
identification, signal processing, adaptive control, statistical learning, and so on, see [1–3] for
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some design and theoretical analyses on estimation and filtering algorithms. Over the past few
decades, considerable progress has been made in estimating unknown parameters for discrete-
time linear regression models. For example, the stochastic gradient (SG) algorithm, LS al-
gorithm, maximum likelihood algorithm, least mean squares (LMS) algorithm, and so on[4–8].
Note that the LS, which can be traced back to Gauss, is a most basic, widely used and com-
prehensively studied estimation algorithm in many fields of science and engineering. Moreover,
when the unknown parameter is time-invariant, the LS algorithm may generate more accurate
estimates in the transient phase and have faster convergence speed compared with SG and LMS
algorithms. So the LS appears to be more suitable for applications that require fast speed and
accurate estimates for unknown constant parameters. This is one of the main motivations for
us to consider the LS-based estimation algorithm in this paper.

Most of the existing techniques on system identification are oriented to discrete-time sys-
tems. However, practical dynamic systems in physics and engineering are naturally described
by differential equations according to physical laws[9]. The continuous-time case tends to be
addressed by modifying these discrete-time techniques. For example, [10] considered adap-
tive estimation and control problems for continuous-time stochastic systems containing both
modeled and unmodeled dynamics, [11] presented some options to deal with the problem of
parameter estimation in continuous-time stochastic systems under white and colored noise per-
turbations using classical methods, [12] considered time-varying matrix estimation problems
in continuous-time stochastic models under a colored noise based on the LMS with forgetting
factor, [13] compared the instrumental variables and the least squares methods applied to pa-
rameter estimation in continuous-time systems and so on. See [14, 15] for more information
about other estimation algorithms for continuous-time systems.

Moreover, with applications of the communication and computer technology, we can only
measure the digital or discrete-time data, which inspires the research of the parameter esti-
mation problem of continuous-time models based on sampling data[16]. The authors in [17]
analyzed LS estimation of continuous-time autoregressive model with exogenous inputs (ARX)
models using discrete-time approximations of the derivatives, [18] identified a continuous-time
Hammerstein system driven by a random signal from observations sampled in time, [19] es-
tablished an upper bound for the estimation error of a standard LS algorithm used to identify
a continuous-time model from filtered and sampling input-output data, and [20] extended the
deterministic learning theory to sampling data nonlinear systems. Also, we proposed the LS al-
gorithm based on the sampling data to identify the unknown parameter vector and established
the almost sure convergence results of the proposed algorithm[21].

Although estimation algorithms are able to estimate unknown parameters in continuous-
time stochastic systems based on sampling data, some prior knowledge about the system can
be helpful for performance improvement. A common prior information is sparsity, i.e., the
unknown high-dimensional signals can be sparse on some basis, which means that only a few
elements of the signals are non-zero in the domain. For example, some practical situations
like radar systems, multi propagation, channel estimation in Ultra Wideband communication
systems, and so on. There are many algorithms that have been developed in the literature
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for sparse signal estimation problems in discrete-time[22, 23]. One technique for sparse system
identification is to regularize the error function by adding another item which takes into account
the sparsity of the unknown parameter. For example, [24] proposed an LMS algorithm with
�0-norm constraint in order to accelerate the sparse system identification, and [25] presented a
theoretical performance analysis of �0-LMS for white Gaussian input data. Also, [26] used an
�1-norm penalty in the standard LMS cost function and performed convergence analysis of the
zero-attracting LMS algorithm based on white input signals, and [27] presented the �1-norm
regularized versions of the recursive least squares algorithm. Moreover, there are some other
alternatives to induce sparse solutions, for example, �r (0 < r < 1)-norm[28].

Another technique is inspired by the CS theory[29], which is a new type of sampling theory
that appeared in the beginning of the 21st century and makes the additional assumption that
the signal is sparse or can be sparse on some orthonormal basis compared with Nyqvist sampling
theory. Reference [30] applied CS in sensor networks and used the CS technique in the transit
layer, [31] identified the sparse system in the compressed domain and applied the CS method
in estimation layer, [32] proposed a novel diffusion compressed estimation scheme for sparse
signals in compressed state, [33] proposed a tail iteratively reweighted least squares algorithm
to solve the �q (1 ≤ q ≤ 2) minimization problem for the CS sparse signal recovery issue, and
so on. Also, we have incorporated the CS technique into the LMS and LS algorithms with
theoretical analyses on the stability and error bounds[34, 35]. Note that most related work focus
on discrete-time models, and a rigorous theoretical analysis on continuous-time models and
sampling data for sparse signal estimation problems is still lacking.

Inspired by the CS theory, this paper proposes a compressed LS algorithm for estimating
unknown sparse high-dimensional parameter of the continuous-time linear stochastic regression
models using the sampling data. At each sampling time instant, we first use the LS algorithm
to construct a low-dimensional estimate for the compressed unknown signal by using the com-
pressed regressor data. Then we use a suitable signal reconstruction algorithm to obtain a
high-dimensional sparse estimate for the original unknown parameter. The main contributions
of this paper are summarized as follows:

1) Based on the CS method, we propose a compressed LS algorithm to deal with the
challenges of parameter sparsity for the continuous-time linear stochastic regression models
using the sampling data. In our theoretical analysis, we first provide an upper bound for the
compressed estimation error of the compressed algorithm under some conditions on the sampling
time interval and the stochastic compressed regression signals, and then give an upper bound
for the desired high-dimensional estimation error.

2) The theoretical analysis of the compressed LS algorithm is provided under a compressed
excitation condition, which does not require the independence or stationarity of the system
signal as commonly used in existing work[36], and is much weaker than the excitation conditions
imposed on the original regression vectors.

3) We show in the simulation part that even in the case where the traditional uncompressed
algorithm cannot estimate the unknown high-dimensional sparse signal due to lack of sufficient
information, the proposed compressed LS algorithm can accomplish the estimation task under
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a compressed information condition, because it is much weaker than the information condition
for the uncompressed algorithms.

The rest of the paper is organized as follows. Section 2 introduces some preliminaries on
matrix theory, stochastic process, compressed sensing theory, and gives the continuous-time
stochastic linear regression model studied in this paper. Section 3 proposes the compressed LS
algorithm based on sampling data and introduces the assumptions used to fulfill the theoretical
analysis. The convergence results of the proposed compressed LS algorithm are established in
Section 4, the performance evaluation case studies are presented in Section 5, and the main
conclusions of this paper are summarized in Section 6, respectively.

2 Problem Formulation

2.1 Some Preliminaries

2.1.1 Matrix Theory

For an m-dimensional vector x, the p-norm of x is defined as ‖x‖p = (
∑m

j=1 |xj |p)1/p (1 ≤
p < ∞), where xj denotes the j-th element of x. The notation ‖x‖0 refers to the number of
nonzero elements of x. For an m × m-dimensional matrix A, the Euclidean norm, denoted by
‖A‖, is defined as ‖A‖ Δ= (λmax{AAT}) 1

2 , where λmax(·) represents the largest eigenvalue of the
matrix and T denotes the transpose operator. The smallest eigenvalue of the matrix is denoted
as λmin(·), and the determinant of the matrix is denoted by det(·). Consider a matrix sequence
{Ak, k ≥ 0} and a positive scalar sequence {ak, k ≥ 0}, if there exists a positive constant C,
such that ‖Ak‖ ≤ Cak holds for all k ≥ 0, then we say Ak = O(ak); and if limk→∞ ‖Ak‖/ak = 0,
then we say Ak = o(ak). For matrices A, B, C and D with suitable dimensions, the matrix
inverse formula (cf., [3]) is given by:

(A + BDC)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1, (1)

where all relevant matrices are assumed to be invertible.

2.1.2 Stochastic Processes

Let (Ω ,F , P ) be a probability space, and {Ft, t ≥ 0} be a nondecreasing family of sub-σ-
algebras of F . A continuous, adapted, stochastic process {Wt,Ft; t ≥ 0} is called a standard
Wiener process if:

1) W0 = 0 holds almost surely (a.s.);

2) {Wt,Ft; t ≥ 0} is an independent incremental process, and for any 0 ≤ s < t < ∞, the
increment Wt − Ws is independent of Fs and obeys the normal distribution with mean
zero and variance t − s.

An adapted sequence {vk,Fk} is called a martingale difference sequence if E(vk+1|Fk) = 0,
where E(·|·) denotes the conditional expectation operator. For a martingale difference sequence,
we have the following martingale estimation theorem.

Lemma 2.1 (see [3]) Suppose that {mk,Fk} is an adapted process (mk can be a number
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or a matrix), and {νk,Fk} is a martingale difference sequence (νk can be a number or a matrix)
satisfying supn E[‖νn+1‖β|Fn] < ∞ with β ∈ (0, 2]. Then for any η > 0, we have

n∑

k=0

mkνk+1 = O
(
Mn(β) log

1
β +η(Mn(β) + e)

)
a.s.,

where

Mn(β) =
( n∑

k=0

‖mk‖β

) 1
β

.

2.1.3 Compressed Sensing Theory

The CS theory has emerged as a new framework for sampling theory, offering several at-
tractive properties such as robustness to noise, fault tolerance, and bandwidth saving. In CS
theory, the vector x is called p-sparse if ‖x‖0 ≤ p, that is, x has at most p nonzero elements.
Assume that the sparse signal x obeys the following equation:

z = Dx + ε, (2)

where z is the measurement, D ∈ R
d×m is the sensing matrix whose number of rows is much

smaller than the number of columns, and ε ∈ R
d is the measurement perturbation bounded

by ‖ε‖ ≤ C. We are interested in how to recover the signal x from the noisy measurement z.
Recovering a general signal x accurately is typically challenging or even impossible. However,
when the signal x is sparse, the recovery problem becomes feasible. Candès, et al. introduced
the concept of the restricted isometry property (RIP) of sensing matrix D in CS theory to study
the reconstruction problem of sparse signals, and they proved that the sparse signal x can be
recovered with high accuracy if D satisfies the RIP and the noise is small (see e.g., [29, 37]).

Definition 2.2 (see [29]) Let D ∈ R
d×m be the sensing matrix, and DL (L ⊆ {1, · · · , m})

be the sub-matrix obtained by extracting the columns of D corresponding to the indices in the
set L. For given integer p (1 ≤ p ≤ m), we define the p-restricted isometry constant γp ∈ [0, 1)
to be the smallest quantity such that the following inequality

(1 − γp)‖b‖2 ≤ ‖DLb‖2 ≤ (1 + γp)‖b‖2 (3)

holds for all real vector b and all subsets L with cardinality at most p. Then we say that D

satisfies the RIP with order p.

Remark 2.3 From (3), the restricted isometry constant γp reflects the degree of preserva-
tion of the signal’s 2-norm, with γp = 0 being exactly preserved. The condition (3) is equivalent
to that all eigenvalues of the matrix DT

LDL lie in [1−γp, 1+γp]. Moreover, from Definition 2.2,
we can see that the p-restricted isometry constant γp increases with p.

The construction of a sensing matrix D satisfying the RIP has attracted significant attention
in the fields of information theory and signal processing. Researchers have proposed various
methods for constructing such matrices. For example, DeVore in [38] introduced a deterministic
construction method based on the concept of mutual incoherence, and Xu and Xu in [39]
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constructed a class of special sensing matrices called partial Fourier matrices. In addition
to deterministic constructions, there is also a body of literature focusing on random sensing
matrices. Random matrices can be generated using various probability distributions, and under
certain conditions, they are known to satisfy the RIP with high probability. For example,
Gaussian random matrices are commonly used as random sensing matrices. In this case, each
entry of D ∈ R

d×m is an independent realization of a Gaussian random variable with zero mean
and variance 1/d. Gaussian matrices exhibit good RIP properties and have been widely studied
in theoretical analysis and practical applications. We have the following result about random
sensing matrices.

Lemma 2.4 (see [40]) For given d, m, and 0 < δ < 1, if the sensing matrix D ∈ R
d×m

is a Gaussian or Bernoulli random matrix, then there exist positive constants c1, c2 depending
only on δ such that the RIP (3) holds for D with the prescribed δ and any p ≤ c1d/ log(m/p)
with probability no less than 1 − e−c2d.

Remark 2.5 In [40], Baraniuk, et al. showed that the constants c1 and c2 satisfy the
inequality c2 ≤ δ2

16 − δ3

48 − c1

[
1 + 1+log(12/δ)

log(m/p)

]
and the constant c1 can be small enough to ensure

c2 > 0. For example, if c1 = δ3

120 , then we can obtain that the sensing D satisfies the RIP with
probability no less than 1 − e−c2d if d ≥ 120s log(m/p)/δ3.

After constructing the sensing matrix, the recovery problem of the sparse signal x can be
formulated as the following convex optimization problem:

min
x′∈Rm

‖x′‖1, s.t. ‖Dx′ − z‖ ≤ C. (4)

For the signals obtained by solving the above convex optimization problem, Candès and Tao
in [37] established the following lemma on the upper bound of the error between the recovered
signals and original signals, which provides a theoretical guarantee for the accuracy of the
recovery of sparse signals using the convex optimization approach. It has been widely used in
the analysis and design of compressed sensing systems and has significantly contributed to the
development of signal processing and related fields.

Lemma 2.6 (see [37]) Let p satisfy γ3p + 3γ4p < 2 where γ3p and γ4p are defined in
Definition 2.2. Then for any p-sparse signal x and any perturbation ε with ‖ε‖ ≤ C, the
recovered signal x∗ obtained by solving the optimization problem (4) obeys ‖x∗ − x‖ ≤ CpC,

where the positive constant Cp can be taken as Cp � 4√
3(1−γ4p)−

√
1+γ3p

.

Remark 2.7 Note that for p satisfying the condition of Lemma 2.6, we can get the true
value of the sparse signal by the reconstruction process if there are no measurement perturba-
tions in (2).

2.2 Continuous-Time Stochastic Regression Model

Let us consider the continuous-time stochastic linear regression model described by the
following stochastic differential equation:

ot = SθTϕt + nt, t ≥ 0, (5)
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where S is the integral operator, i.e.,

Sϕt =
∫ t

0

ϕsds,

ot ∈ R is the scalar observation at time t, θ ∈ R
m is an unknown p-sparse parameter vector

that needs to be estimated (i.e., θ has at most p non-zero elements), ϕs ∈ R
m is a stochastic

regression vector, and the system noise nt is a standard Wiener process. We can see that many
models such as the continuous-time ARX model and autoregressive moving average system with
exogenous inputs (ARMAX) model can be included by (5).

With the application of computer and communication technology in many practical scenar-
ios, we can only receive the discrete-time sampling data {otk

, ϕtk
}∞k=0 rather than continuous-

time signals, where tk is the k-th sampling time instant. Besides, the sampling stochastic
regression vector is always sparse. Here we assume that the sampling stochastic regression vec-
tor ϕtk

is 3p-sparse for all k. In this paper, we aim at designing an algorithm to estimate the
unknown sparse parameter vector θ by using the sampling data based on compressed sensing
theory, and providing the asymptotic results for the proposed algorithm.

3 Compressed LS Algorithm Based on Sampling Data
Now, we propose the compressed LS algorithm based on sampling data (see Algorithm 1),

where δk = tk+1 − tk and tk represents the k-th sampling time instant.

Algorithm 1 Compressed LS algorithm based on sampling data
Input: {ϕtk

∈ R
m, otk+1 ∈ R}, k = 0, 1, · · ·

Output: {θtk+1 ∈ R
m}, k = 0, 1, · · ·

Initialization: Begin with any initial vector ξ0 ∈ R
d and any initial positive definite matrix

P0 ∈ R
d×d.

for each k = 0, 1, · · · do
Step 1 Compression: φtk

= Dϕtk
∈ R

d, where D ∈ R
d×m is the sensing matrix.

Step 2 Estimation in a low-dimensional space:

ξtk+1 = ξtk
+ δkatk

Ptk
φtk

(otk+1 − otk
− φT

tk
ξtk

δk), (6)

Ptk+1 = Ptk
− δ2

katk
Ptk

φtk
φT

tk
Ptk

, (7)

atk
=

1
1 + δ2

kφT
tk

Ptk
φtk

, (8)

δk = tk+1 − tk. (9)

Step 3 Reconstruction:

θtk+1 = argmin
θ∈Ξ

‖θ‖1, (10)

where Ξ =
{

θ ∈ R
m
∣
∣
∣‖Dθ − ξtk+1‖ ≤ C

}
. (11)
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Remark 3.1 In Step 3 of Algorithm 1, the positive constant C can indeed be chosen
as an upper bound on the estimation error ‖ξ̃tk

‖, and the explicit value of C can be found in
Theorem 4.4 of Section 4. To solve the convex optimization problem (10) in the reconstruc-
tion process (i.e., Step 3), various algorithms including orthogonal matching pursuit (OMP),
compressive sampling matching pursuit (CoSaMP), and interior-point (IP) algorithms can be
employed, see e.g., [41, 42].

To proceed with the theoretical analysis of the proposed algorithm, we introduce some
assumptions on the sensing matrix, the sampling interval, and regression vectors.

Assumption 3.2 The sensing matrix D ∈ R
d×m satisfies the RIP with order 4p where

the 3p- and 4p-restricted isometry constants denoted as γ3p and γ4p (see Definition 2.2) satisfy
γ3p + 3γ4p < 2.

Remark 3.3 The above properties (RIP) of the sensing matrix D which is often used
in the compressive sensing theory can guarantee that the sparse signals can be recovered with
high accuracy (see Lemma 2.6). By Lemma 2.4, we know that for any given restricted isometry
constant, if the sensing matrix D is taken as a Gaussian or Bernoulli random matrix, then it
satisfies RIP condition with a high probability.

Assumption 3.4 The sampling interval δk is designed to satisfy
∑n

k=0 δ2
k = ∞ and

∑n
k=0 δ4

k < ∞.

Assumption 3.5 The stochastic regression signal φt in the model (5) is Ft-measurable,
where Ft = σ{φs, vs, s ≤ t} is a family of nondecreasing σ-algebras. And φt is also Lipshitz
continuous for almost all sample paths, i.e., there exists a positive constant L such that for all
t > 0 and s > 0, ‖φt − φs‖ ≤ L|t − s| holds almost surely.

Assumption 3.6 (Compressed persistent excitation condition) There exists a positive
constant M such that

λn
min −−−−→

n→∞ ∞, sup
n≥0

rn

λn
min

≤ M,

where

rn � 1 +
n∑

k=0

δ2
k‖φtk

‖2, λn
min � λmin

(
P−1

0 +
n∑

k=0

δ2
kφtk

φT
tk

)
.

Remark 3.7 Assumption 3.5 is often used to deal with the effect of the approximation
deviation caused by the sampling data, see Theorem 4.2. Assumption 3.6 is called compressed
persistent excitation condition since it is imposed on the compressed regression vectors φtk

,
rather than the original high-dimensional sparse regression vector ϕtk

, which is different from
the existing literature, see e.g., [21, 22]. Moreover, it can be verified that Assumption 3.6 is
much weaker than the traditional persistent excitation condition imposed on the original high

dimensional regression vector[4], i.e., supn

λmax

(∑n
k=0 ϕtk

ϕT
tk

)

λmin

(∑
n
k=0 ϕtk

ϕT
tk

) < ∞.
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4 Performance Results of Algorithm 1

In this section, we will investigate the asymptotic convergence properties of the proposed
Algorithm 1. Denote ξ̃tk

as the compressed estimate error at the time instant tk in the low-
dimensional space, i.e., ξ̃tk

= ξ − ξtk
, where ξ = Dθ. Substituting (5) into (6), we can obtain

the following error equation:

ξ̃tk+1 =ξ − ξtk+1

=ξ − ξtk
− atk

δkPtk
φtk

{∫ tk+1

tk

ϕT
s dsθ − φT

tk
ξtk

δk + ntk+1 − ntk

}

=ξ̃tk
− atk

δkPtk
φtk

{∫ tk+1

tk

ϕT
s dsθ − ϕT

tk
θδk + ϕT

tk
θδk − φT

tk
ξδk

+ φT
tk

ξδk − φT
tk

ξtk
δk + ntk+1 − ntk

}

=ξ̃tk
− atk

δkPtk
φtk

{
φT

tk
ξ̃tk

δk + ΔT
tk+1

θ + wtk
+ ntk+1

}
, (12)

where

Δtk+1 =
∫ tk+1

tk

φsds − φtk
δk, (13)

wtk
= ϕT

tk
θδk − φT

tk
ξδk, (14)

ntk+1 = ntk+1 − ntk
. (15)

By the fact that {nt,Ft} is a standard Wiener process, we have the following properties:

1) For k ≥ 0, ntk
obeys a normal distribution with mean 0 and variance δk;

2) {ntk+1 ,Ftk
, k ≥ 0} is a martingale difference sequence, and 0 < E

[|ntk+1 |β |Ftk

]
< ∞

holds a.s. for any constant β ≥ 2, where Ftk
= σ{φs, ns, s ≤ tk}.

In many existing results on the estimation of the unknown parameter vector of continuous-
time systems based on the sampling data (cf., [17, 20]), continuous-time systems are often
discretized, and the approximation error Δtk

caused by discretization is seldom considered.
Different from these studies, we will consider the effect of the approximation error Δtk

and the
sensing error wtk

on the estimation performance of algorithm, see the following theorem.

Theorem 4.1 Under Assumption 3.2, for the dynamical system (5), the compressed es-
timation error ξ̃tn+1 satisfies the following relationship:

ξ̃T
tn+1

P−1
tn+1

ξ̃tn+1 +
(

1
2

+ o(1)
) n∑

k=0

atk
δ2
k

(
φT

tk
ξ̃tk

)2

≤7
n∑

k=0

(
ΔT

tk+1
θ
)2

+
63γ2

4p‖θ‖2

(1 − γ4p)

n∑

k=0

(‖φtk
‖2δ2

k

)
+ O
(
log det(P−1

tn+1
)
)

a.s.
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Proof By (12), we have

ξ̃tk+1 =
(
I − atk

δ2
kPtk

φtk
φT

tk

)
ξ̃tk

− atk
δkPtk

φtk

(
ΔT

tk+1
θ + wtk

+ ntk+1

)
. (16)

Multiply both sides of (7) by P−1
tk

, we have

Ptk+1P
−1
tk

= I − atk
δ2
kPtk

φtk
φT

tk
. (17)

Substituting (17) into (16), we can obtain that

ξ̃tk+1 = Ptk+1P
−1
tk

ξ̃tk
− atk

δkPtk
φtk

(ΔT
tk+1

θ + wtk
+ ntk+1),

which is equivalent to the following equation

P−1
tk+1

ξ̃tk+1 = P−1
tk

ξ̃tk
− atk

δkP−1
tk+1

Ptk
φtk

(
ΔT

tk+1
θ + wtk

+ ntk+1

)
. (18)

Now, we consider the Lyapunov candidate function Wtk
= ξ̃T

tk
P−1

tk
ξ̃tk

. From (12) and (18), we
have

Wtk+1 =ξ̃T
tk+1

P−1
tk+1

ξ̃tk+1

=
[
ξ̃tk

− atk
δ2
kPtk

φtk
φT

tk
ξ̃tk

− atk
δkPtk

φtk

(
ΔT

tk+1
θ + wtk

+ ntk+1

)]T

·
[
P−1

tk
ξ̃tk

− atk
δkP−1

tk+1
Ptk

φtk

(
ΔT

tk+1
θ + wtk

+ ntk+1

)]
.

By matrix inverse formulas (1) and (7), we have P−1
tk+1

= P−1
tk

+ δ2
kφtk

φT
tk

. By this equation
and the definition of atk

in (8), hence we obtain P−1
tk+1

Ptk
= I + δ2

kφtk
φT

tk
Ptk

and 1 − atk
=

atk
δ2
kφT

tk
Ptk

φtk
. Then we have

Wtk+1 =ξ̃T
tk+1

P−1
tk+1

ξ̃tk+1

=
[
ξ̃tk

− atk
δ2
kPtk

φtk
φT

tk
ξ̃tk

− atk
δkPtk

φtk

(
ΔT

tk+1
θ + wtk

+ ntk+1

)]T

·
[
P−1

tk
ξ̃tk

− δkφtk

(
ΔT

tk+1
θ + wtk

+ ntk+1

)]
.

Hence we can get the following equation

Wtk+1 =ξ̃T
tk

P−1
tk

ξ̃tk
− atk

δ2
k

(
φT

tk
ξ̃tk

)2

− 2atk
δkφT

tk
ξ̃tk

(
ΔT

tk+1
θ + wtk

+ ntk+1

)

+ atk
δ2
kφT

tk
Ptk

φtk

(
ΔT

tk+1
θ + wtk

+ ntk+1

)2

≤Wtk
− atk

δ2
k

(
φT

tk
ξ̃tk

)2

− 2atk
δkφT

tk
ξ̃tk

ΔT
tk+1

θ − 2atk
δkφT

tk
ξ̃tk

wtk

− 2atk
δkφT

tk
ξ̃tk

ntk+1 + 3atk
δ2
kφT

tk
Ptk

φtk

(
ΔT

tk+1
θ
)2

+ 3atk
δ2
kφT

tk
Ptk

φtk
w2

tk

+ 3atk
δ2
kφT

tk
Ptk

φtk
n2

tk+1
. (19)

By summing both sides of (19) from k = 0 to n, we have

Wtn+1 − W0 +
n∑

k=0

atk
δ2
k(φT

tk
ξ̃tk

)2



1498 XIE SIYU, et al.

≤−2
n∑

k=0

atk
δkφT

tk
ξ̃tk

ΔT
tk+1

θ

︸ ︷︷ ︸
I1

−2
n∑

k=0

atk
δkφT

tk
ξ̃tk

wtk

︸ ︷︷ ︸
I2

−2
n∑

k=0

atk
δkφT

tk
ξ̃tk

ntk+1

︸ ︷︷ ︸
I3

(20)

+ 3
n∑

k=0

atk
δ2
kφT

tk
Ptk

φtk
(ΔT

tk+1
θ)2

︸ ︷︷ ︸
I4

+ 3
n∑

k=0

atk
δ2
kφT

tk
Ptk

φtk
w2

tk

︸ ︷︷ ︸
I5

+ 3
n∑

k=0

atk
δ2
kφT

tk
Ptk

φtk
n2

tk+1

︸ ︷︷ ︸
I6

.

In the following, we estimate the six terms I1, I2, · · · , I6 on the right hand side of (20). By
the Hölder inequality and mean inequality, we have for any h > 0,

|I1| ≤
{

n∑

k=0

(
hatk

δkφT
tk

ξ̃tk

)2
} 1

2

·
{

n∑

k=0

(
2
h
ΔT

tk+1
θ

)2
} 1

2

≤h2

2

n∑

k=0

atk
δ2
k

(
φT

tk
ξ̃tk

)2

+
2
h2

n∑

k=0

(
ΔT

tk+1
θ
)2

.

(21)

Denote the set Λt =
{
i
(1)
tk

, · · · , i
(3p)
tk

, j(1), · · · , j(p)
}

, where i
(1)
tk

, · · · , i
(3p)
tk

are the indices of 3p

nonzero elements of ϕtk
and j(1), · · · , j(p) are the indices of p nonzero elements of θ. The analysis

for the case where the cardinality of Λtk
is less than 4p (i.e., part of the nonzero elements of the

vectors ϕtk
and θ are in the same position) is almost the same as that for the case where the set

Λtk
has 4p elements. Thus, we just consider the latter. The vectors obtained by extracting the

4p nonzero elements from ϕtk
and θ are denoted as ϕ

(4p)
tk

and θ̆
(4p)
tk

, and the indices of these 4p

elements come from the set Λtk
. Correspondingly, we extract the 4p columns from the matrix

D, and denote the new matrix as D
(4p)
tk

.

By Assumption 3.2 and Remark 2.3, we see that all eigenvalues of the matrix
(
D

(4p)
tk

)T

D
(4p)
tk

lie in the interval [1 − γ4p, 1 + γ4p]. Thus, we have

|wtk
| =
∥
∥ϕT

tk
(Im − DTD)θ

∥
∥ δk

=
∥
∥
∥
∥

(
ϕ

(4p)
tk

)T [
I4p −

(
D

(4p)
tk

)T

D
(4p)
tk

]
θ̆
(4p)
tk

∥
∥
∥
∥ δk

≤
∥
∥
∥
∥

(
ϕ

(4p)
tk

)T [
(1 + γ4p)I4p −

(
D

(4p)
tk

)T

D
(4p)
tk

]
θ̆
(4p)
tk

∥
∥
∥
∥ δk + γ4p

∥
∥
∥
∥

(
ϕ

(4p)
tk

)T

θ̆
(4p)
tk

∥
∥
∥
∥ δk

≤
∥
∥
∥(ϕ(4p)

tk
)T
∥
∥
∥ ·
∥
∥
∥
∥(1 + γ4p)I4p −

(
D

(4p)
tk

)T

D
(4p)
tk

∥
∥
∥
∥ ·
∥
∥
∥θ̆

(4p)
tk

∥
∥
∥ δk + γ4p

∥
∥
∥
∥

(
ϕ

(4p)
tk

)T

θ̆
(4p)
tk

∥
∥
∥
∥ δk

≤ 2γ4p

∥
∥
∥ϕ

(4p)
tk

∥
∥
∥ ·
∥
∥
∥θ̆

(4p)
tk

∥
∥
∥ δk + γ4p

∥
∥
∥ϕ

(4p)
tk

∥
∥
∥ ·
∥
∥
∥θ̆

(4p)
tk

∥
∥
∥ δk

= 3γ4p ‖ϕtk
‖ · ‖θ‖ δk

≤ 3γ4p
√

1 − γ4p

‖Dϕtk
‖‖θ‖δk

=
3γ4p√
1 − γ4p

‖φtk
‖‖θ‖δk. (22)
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By (22), we can obtain the following inequality for any h > 0,

|I2| ≤
{

n∑

k=0

(hatk
δkφT

tk
ξ̃tk

)2
} 1

2

·
{

n∑

k=0

(
2
h

wtk

)2
} 1

2

≤h2

2

n∑

k=0

atk
δ2
k(φT

tk
ξ̃tk

)2 +
2
h2

n∑

k=0

w2
tk

≤h2

2

n∑

k=0

atk
δ2
k(φT

tk
ξ̃tk

)2 +
18γ2

4p‖θ‖2

h2(1 − γ4p)

n∑

k=0

(‖φtk
‖2δ2

k

)
.

(23)

Note that δkatk
φT

tk
θ̃tk

∈ Ftk
, by Lemma 2.1, we can derive the following estimate for I3,

|I3| = O(1) + o

( n∑

k=0

δ2
katk

(φT
tk

ξ̃tk)2
)

. (24)

By (8), it is clear that δ2
katk

φT
tk

Ptk
φtk

≤ 1. Thus, we have

I4 ≤ 3
n∑

k=0

(
ΔT

tk+1
θ
)2

. (25)

Similarly, by (22), we have

I5 ≤ 3
n∑

k=0

w2
k ≤ 27γ2

4p‖θ‖2

1 − γ4p

n∑

k=0

(‖φtk
‖2δ2

k

)
. (26)

For I6, it follows that

I6 =
n∑

k=0

δ2
katk

φT
tk

Ptk
φtk

{
n2

tk+1
− E

[
n2

tk+1
|Ftk

]}
+

n∑

k=0

δ2
katk

φT
tk

Ptk
φtk

E

[
n2

tk+1
|Ftk

]
. (27)

Note that {n2
tk+1

−E[n2
tk+1

|Ftk
],Ftk

} is a martingale difference sequence, by the Cr-inequality
and the Lyapunov inequality, we see that for any α ∈ (1, 2],

sup
k

E

{[
n2

tk+1
− E(n2

tk+1
|Ftk

)
]α

|Ftk

}

≤2 sup
k

E
[|ntk+1 |2α|Ftk

]
+ 2 sup

k
E

[(
E
[|ntk+1 |2|Ftk

])α |Ftk

]

≤4 sup
k

E
[|ntk+1 |2α|Ftk

]

<∞
holds almost surely. From Lemma 2.1, we can derive that for any η > 0,

n∑

k=0

δ2
katk

φT
tk

Ptk
φtk

{
n2

tk+1
− E

[
n2

tk+1
|Ftk

]}
= O

(
Mn(α) log

1
α +η (Mn(α) + e)

)
a.s.,

where

Mn(α) �
{ n∑

k=0

(
δ2
katk

φT
tk

Ptk
φtk

)α
} 1

α

.
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In the following, we need to analyze Mn(α). Since

P−1
tk+1

= P−1
tk

+ δ2
kφtk

φT
tk

= P−1
tk

(
I + δ2

kPtk
φtk

φT
tk

)
, (28)

then we can derive that

det(P−1
tk+1

) = det(P−1
tk

)
(
1 + δ2

kφT
tk

Ptk
φtk

)
.

Thus, it follows that

δ2
kφT

tk
Ptk

φtk
=

det(P−1
tk+1

) − det(P−1
tk

)

det(P−1
tk

)
, atk

δ2
kφT

tk
Ptk

φtk
=

det(P−1
tk+1

) − det(P−1
tk

)

det(P−1
tk+1

)
.

Then, it follows that

n∑

k=0

δ2
katk

φT
tk

Ptk
φtk

=
n∑

k=0

det(P−1
tk+1

) − det(P−1
tk

)

det(P−1
tk+1

)

≤
n∑

k=0

∫ det(P−1
tk+1

)

det(P−1
tk

)

dx

x

= log det(P−1
tn+1

) + log det(P−1
0 ). (29)

According to the inequality atk
δ2
kφT

tk
Ptk

φtk
< 1 and (29), we can deduce the following equation

Mn(α) = O(1) + o
(
log det

(
P−1

tn+1

))
, (30)

where α > 1 is used. Thus, from (27), (29) and (30), it can be deduced that

I6 = O(1) + o
(
log det

(
P−1

tn+1

))
+ O
(
log det

(
P−1

tn+1

))
= O

(
log det

(
P−1

tn+1

))
. (31)

Hence by (20), (21), (23)–(26), (31), taking h = 1√
2
, we have the following inequality

Wtn+1 − W0 +
n∑

k=0

atk
δ2
k(φT

tk
ξ̃tk

)2

≤1
2

n∑

k=0

atk
δ2
k(φT

tk
ξ̃tk

)2 + 7
n∑

k=0

(ΔT
tk+1

θ)2 +
63γ2

4p‖θ‖2

1 − γ4p

n∑

k=0

(‖φtk
‖2δ2

k) + o

( n∑

k=0

δ2
katk

(φT
tk

ξ̃tk
)2
)

+ O
(
log det

(
P−1

tn+1

))
,

which implies that

ξ̃T
tn+1

P−1
tn+1

ξ̃tn+1 +
(

1
2

+ o(1)
) n∑

k=0

atk
δ2
k

(
φT

tk
ξ̃tk

)2

≤7
n∑

k=0

(
ΔT

tk+1
θ
)2

+
63γ2

4p‖θ‖2

1 − γ4p

n∑

k=0

(‖φtk
‖2δ2

k

)
+ O
(
log det

(
P−1

tn+1

))
.

This completes the proof of Theorem 4.1.
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Therefore, an upper bound for the compressed estimation error of the proposed compressed
LS algorithm is established as follows.

Theorem 4.2 Under Assumptions 3.2 and 3.5, the compressed estimation error ξ̃tn+1 has
the following upper bound:

‖ξ̃tn+1‖2 ≤ 7L2‖θ‖2

4

∑n
k=0 δ4

k

λn
min

+
63γ2

4p‖θ‖2

1 − γ4p
· rn

λn
min

+ O

(
log rn

λn
min

)

. (32)

Proof By Theorem 4.1, we have

ξ̃T
tn+1

P−1
tn+1

ξ̃tn+1 ≤ 7
n∑

k=0

(ΔT
tk+1

θ)2 +
63γ2

4p‖θ‖2

1 − γ4p

n∑

k=0

(‖φtk
‖2δ2

k

)
+ O
(
log det

(
P−1

tn+1

))
,

Then we have the following equation

‖ξ̃tn+1‖2 ≤ 7
∑n

k=0(Δ
T
tk+1

θ)2

λn
min

+
63γ2

4p‖θ‖2

1 − γ4p
· rn

λn
min

+ O

(
log det(P−1

tn+1
)

λn
min

)

a.s., (33)

where λn
min and rn are defined in Assumption 3.6. Using (13) and Assumption 3.5, we obtain

the following inequality

‖Δtk+1‖ =
∥
∥
∥
∥

∫ tk+1

tk

(φs − φtk
)ds

∥
∥
∥
∥ ≤
∫ tk+1

tk

L(s − tk)ds =
L

2
δ2
k. (34)

Note that

log det(P−1
tn+1

) =
d∑

i=0

log λi(P−1
tn+1

) ≤ d log λmax(P−1
tn+1

) = O (log rn) , (35)

where d is the dimension of the vector φtk
. Substituting (34) and (35) into (33) yields

‖ξ̃tn+1‖2 ≤ 7L2‖θ‖2

4

∑n
k=0 δ4

k

λn
min

+
63γ2

4p‖θ‖2

1 − γ4p
· rn

λn
min

+ O

(
log rn

λn
min

)

, (36)

which completes the proof of the theorem.

Remark 4.3 By (36), we see that the upper bound of the estimation error ξ̃tn+1 consists
of three parts: The first part is mainly caused by the approximation error Δtk+1 ; the second
part is mainly concerned with the sensing error wtk

; the third part is mainly caused by the
system noise ntk

. Under Assumptions 3.4 and 3.6, the first part and the third part tend to zero
as n → ∞, and the second part tends to zero as the 4p-restricted isometry constant γ4p goes to
zero. Furthermore, by Remark 2.5, we can see that the γ4p can be arbitrarily small when the
dimension of the sensing matrix D satisfies the inequality d ≥ 480p log(m/4p)/γ3

4p.

Theorem 4.4 Under Assumptions 3.2–3.6, we have the following upper bound for the
estimation error of the compressed LS algorithm:

‖θ̃tn+1‖2 = O

(
C2

pγ2
4p

1 − γ4p

)

a.s.,

where θ̃tn+1 = θ − θtn+1 and Cp = 4√
3(1−γ4p)−

√
1+γ3p

defined in Lemma 2.6.
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Proof By Assumptions 3.4–3.6 and Theorem 4.2, we have

sup
n

‖θ̃tn+1‖2 ≤ 64Mγ2
4p‖θ‖2

1 − γ4p
a.s., (37)

where M is defined in Assumption 3.6. Note that ξ̃tn+1 = Dθ − ξtn+1 , by (37), the constant

C in Algorithm 1 can be taken as C =

√
64Mγ2

4p‖θ‖2

1−γ4p
. Furthermore, by Assumption 3.6 and

Lemma 2.6, we have for large n,

‖θtn+1 − θ‖ ≤ Cp

√
64Mγ2

4p‖θ‖2

1 − γ4p
a.s. (38)

This completes the proof of the theorem.

Remark 4.5 Theorem 4.4 gives an upper bound of the original high-dimensional estima-
tion error, which is positively related to the RIP constant γ4p. The estimation error goes to
zero when γ4p tends to zero.

5 A Simulation Example

In this section, we provide a simulation example to verify the performance of the compressed
LS algorithm based on sampling data. Consider the following dynamic system:

ot = SϕT
t θ + nt,

with the dimension m = 100. Set the regression vector ϕt = [sin(t), cos(t),
√

t, 1 + sin(2t), 2 −
cos(2t), 0, · · · , 0

︸ ︷︷ ︸
95

]T ∈ R
100, the system noise {nt ≥ 0} is a standard Wiener process, and the

unknown sparse parameter θ = [0.3, 1.2, 0.8, 0, · · · , 0
︸ ︷︷ ︸

94

, 0.1, 0, 0.2]T ∈ R
100. For the settings of

Algorithm 1, we take the initial estimate as θ0 = [0.1, · · · , 0.1
︸ ︷︷ ︸

100

]T and the initial covariance

matrix as P0 = diag(1, 1, 1, 1, 1). The sampling interval δk is same as that in [21], i.e.,

δk =
a0

b

⌈

log
(b20−1)� k

c0
�+b20

b20

⌉

−1

0

,

where �·� is a round up operator. According to [21], we have for any given a0 > 0, b0 > 0, c0 > 1,
∑n

k=0 δ2
k = ∞ and

∑n
k=0 δ4

k = O
(∑n

k=0
1

b4k
0

b2k
0

)
< ∞. Thus, the time interval δk satisfies

Assumption 3.4. Here we choose a0 = 0.24, b0 = 1.2, c0 = 200.
The sensing matrix D is selected as a 5× 100-dimensional matrix whose elements are Gaus-

sian random variables with zero mean and variance 1/5. Reference [40] showed that such a
sensing matrix can satisfy RIP condition (3) with probability no less than 1 − e−5c for some
positive constant c (see Lemma 2.4). For the reconstruction procedure (i.e., Step 3 in Algo-
rithm 1), the OMP algorithm is used to solve the optimization problem. It can be shown
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that the compressed regression vector φtk
= Dϕtk

∈ R
5 can satisfy Assumptions 3.5 and 3.6

(i.e., compressed persistent excitation condition) while the original high-dimensional regression
vector ϕtk

cannot satisfy the excitation condition in [21]. We compare our algorithm with the
traditional uncompressed LS algorithm based on sampling data (cf., [21]) in Figure 1. From
Figure 1, we can see that the mean square error (MSE) (averaged over 200 runs) of our com-
pressed LS algorithm is much smaller than that of the uncompressed LS algorithm in [21],
which means that for the sparse regression vectors, the compressed distributed LS algorithm
has better estimation performance than the uncompressed LS algorithm based on sampling
data. Moreover, in Figure 2, we compare our algorithm with cases where the sampling intervals
are constants and taken as δk = 0.4, δk = 0.6, δk = 0.8 and δk = 1, respectively. Then we find
that the MSE of the algorithm with fixed constant sampling interval increases as δk increases,
while the MSE of the proposed algorithm based on flexible sampling interval performs better
than cases of fixed constant sampling intervals.

k

Figure 1 MSEs of the compressed and uncompressed LS algorithms based on sampling data

k

k

k

k

k

k

Figure 2 MSEs of the compressed LS algorithm under flexible sampling interval

and constant sampling intervals
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6 Concluding Remarks

In this paper, we proposed the compressed LS algorithm to estimate an unknown high-
dimensional sparse parameter of continuous-time linear stochastic regression models using the
sampling data based on compressed sensing methods. Under a compressed excitation condition
and suitably choosing sampling time interval, we established the performance result and up-
per bound for the compressed parameter vector and the original high-dimensional parameter
vector of the proposed compressed LS algorithm. Also, the theoretical results do not require
independence and stationarity conditions on the system signals, which indicates that our theory
is available for feedback systems, which plays a key role in the system and control fields. There
remains some interesting open problems in the direction of this paper. For example, to consider
the networked systems and the compressed distributed LS algorithm.
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