
Systems & Control Letters 164 (2022) 105228

a
p
h
m
t
w
d
b
a
a
c
t
(

d
a
o

A
S

h
0

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Performance analysis of the compressed distributed least squares
algorithm✩

Die Gan, Zhixin Liu ∗

Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

a r t i c l e i n f o

Article history:
Received 22 September 2021
Received in revised form 21 February 2022
Accepted 6 April 2022
Available online 3 May 2022

Keywords:
Sparse signal
Compressive sensing
Distributed least squares
Performance analysis

a b s t r a c t

In this paper, we consider the distributed estimation problem of unknown high-dimensional sparse
signals for a random dynamic system. We propose a compressed distributed algorithm by using the
compressive sensing theory and the distributed least squares (LS) algorithm. Under a compressed
cooperative persistent excitation condition, the upper bound of the estimation error is established
which is positively related to the restricted isometry constant. Our results are obtained without relying
on some stringent conditions such as independency or stationarity of the regression vectors. Finally,
we provide a simulation example to show that the compressed distributed least squares algorithm has
better performance than the regularized distributed LS algorithm with l1 penalty for the estimation of
high-dimensional sparse signals.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decades, wireless sensor networks (WSNs) have
ttracted increasing research attention due to wide practical ap-
lications including target tracking, surveillance, and biomedical
ealth monitoring [1,2]. A large amount of data from WSNs
ay help improve the performance of the estimation and fil-

ering problems by designing suitable algorithms [3]. Compared
ith the centralized algorithms, the distributed ones which only
epend on local information exchange have the advantages of ro-
ustness and scalability, as well as reducing communication load
nd calculation pressure. Some distributed adaptive estimation
nd filtering algorithms are proposed based on the incremental,
onsensus and diffusion strategies, and the theoretical analysis on
he performance analysis of the algorithms are also established
cf., [4–9]).

Sparsity is one of the important characteristics of high-
imensional signals like audio signals [10], image signals [11]
nd biomedical data [12]. The prior knowledge about the sparsity
f the signals can be exploited to design appropriate algorithms
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to improve the estimation performance [13]. Many estimation
algorithms based on sparse signals have been proposed in ex-
isting literature, see e.g., [14–17]. Most of them are designed
using the sparse optimization method where a penalty term
is added into the cost function to avoid overfitting. Theoreti-
cal results of the distributed adaptive filtering algorithms for
sparse random systems are established under some signal condi-
tions. For example, Liu et al. in [17] proposed distributed sparse
recursive LS algorithms by using l1 and l0 norms as the penal-
ties and the mean stability and mean-square convergence were
analyzed with the independent and identically distributed regres-
sors. Lorenzo and Sayed in [15] provided the convergence and
mean-square performance analysis of the distributed least mean
squares (LMS) algorithm regularized by convex penalties where
the assumption of independent regressors is required. However,
the independency assumption of regression vectors is too strong
to be applied to practical feedback control systems. Moreover, the
high-dimensional data are used in the design and analysis of the
algorithms, which may lead to high computational complexity,
slow convergence rate and degraded mean square error (MSE)
performance.

Another branch to deal with sparse signals is the compressive
sensing (CS) theory. The CS theory is a novel sampling theory
where fewer measurements are required to get a higher accuracy
estimation of unknown sparse signals than those in Shannon
sample principle (cf., [18,19]). The CS theory can be applied to
deal with the estimation problem of high-dimensional sparse
signals. Xu et al. in [20] introduced a distributed compressed
estimation scheme to estimate the compressed parameter.
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umerical simulations show that the distributed estimation
lgorithm based on the CS theory can improve performance
nd reduce bandwidth. However, the comprehensive theoretical
nalysis for the compressed estimation algorithms is still lacking.
i and Li in [21] provided the stability analysis of the compressed–
ombine–reconstruct–adaptive algorithm for the independent re-
ression vectors. We remark that an elegant theoretical result for
he compressed distributed LMS was established by Xie and Guo
n [22] under a compressed cooperative information condition.

The distributed LS algorithm has been widely investigated due
o its faster convergence rate and practical applications in the
rea of cloud technologies [23]. The rigorous theoretical anal-
sis for the convergence of the distributed LS algorithm was
iven in [24], where a ‘‘weakest’’ condition in the existing lit-
rature, i.e., cooperative excitation condition was introduced to
uarantee the convergence of the distributed LS. However, the
ooperative excitation condition may not be satisfied for the
igh-dimensional sparse regression signals. In order to solve the
stimation problem of the sparse random dynamic system, we
ropose a compressed distributed LS algorithm using the noisy
bservations and sparse regression vectors from its neighbors.
ifferent from the sparse optimization method in [15–17], we use
he compressed regression vectors to estimate the unknown sig-
als in a low-dimensional space by the distributed least squares
lgorithm. Then, the signal reconstruction algorithm is used to
btain the estimate of the original high-dimensional sparse sig-
al. We introduce a compressed cooperative persistent excitation
ondition under which the comprehensive analysis for the per-
ormance of the proposed algorithm is established. We show
hat the upper bound for the estimation error is positively re-
ated to the restricted isometry constant. We note that compared
ith [21], our theoretical results are established without relying
n the assumptions of the independency and stationarity of re-
ression signals. A numerical example is given to show that the
ompressed distributed LS algorithm can estimate the unknown
igh-dimensional sparse signal, while the classical distributed LS
lgorithm (cf., [24]) cannot fulfill the estimation task due to lack
f adequate excitation condition.
The rest of this paper is organized as follows. We first intro-

uce some preliminaries including matrix analysis, the CS theory
nd graph theory in Section 2. Section 3 presents the compressed
istributed LS algorithm. In Section 4, we provide the theoretical
nalysis for the compressed distributed LS algorithm. A simula-
ion example is presented in Section 5, and concluding remarks
re made in Section 6.

. Some preliminaries

In this paper, we will construct the distributed algorithm to
stimate unknown high-dimensional sparse signals and provide
he performance analysis of the algorithm. For this purpose, we
eed to introduce some notations and basic results on the matrix
nalysis, compressive sensing theory and graph theory.

.1. Notations

For an m-dimensional vector x, the p-norm of x is defined as
x∥p = (

∑m
j=1 |xj|p)1/p (1 ≤ p < ∞), where xj denotes the jth

element of x. For p = 1, ∥x∥1 is the sum of absolute values of all
the elements in x; and for p = 2, ∥x∥2 is the Euclidean norm, we
simply write ∥ · ∥2 as ∥ · ∥. We also use the notation ∥x∥0 which
epresents the number of nonzero elements of x; For an m × n-
imensional real matrix A ∈ Rm×n, ∥A∥ denotes the operator
orm induced by the Euclidean norm, i.e., ∥A∥ = (λmax(AAT ))

1
2 ,

here the notation T denotes the transpose operator and λmax(·)
denotes the largest eigenvalue of the matrix. Correspondingly,
2

λmin(·) denotes the smallest eigenvalue of the matrix. For two real
ymmetric matrices X ∈ Rn×n and Y ∈ Rn×n, X ≥ Y (X > Y )
means that X − Y is a positive semi-definite (definite) matrix.
For matrices A, B, C and D with suitable dimensions, we have
the following matrix inversion formula provided that the relevant
matrices are invertible (see [25]),

(A + BDC )−1
= A−1

− A−1B(D−1
+ CA−1B)−1CA−1. (1)

Let {At} be a matrix sequence and {bt} be a positive scalar se-
quence. Then by At = O(bt ) we mean that there exists a positive
constant C independent of t and bt such that ∥At∥ ≤ Cbt holds
for all t ≥ 0, and by At = o(bt ) we mean that limt→∞

∥At∥
bt

= 0.

2.2. Compressive sensing theory

The CS theory has emerged as a new framework for sampling
theory which has many attractive properties, such as robustness
to noise, fault tolerance, and bandwidth saving. The vector x is
called s-sparse if ∥x∥0 ≤ s, that is, x has at most s nonzero
elements. Assume that the sparse signal x obeys the following
equation,

z = Dx + ϵ, (2)

where z is the measurement, D ∈ Rd×m is the sensing matrix
whose number of rows is much smaller than the number of
columns, and ϵ ∈ Rd is the measurement perturbation bounded
by ∥ϵ∥ ≤ C . We are interested in how to recover the signal x from
the noisy measurement z . We see that for a general signal x, it
is hard or even impossible to recover x. However, the recovery
problem becomes possible when the signal x is sparse. Candès
et al. introduced the definition of the restricted isometry property
(RIP) of sensing matrix D in CS theory to study the reconstruction
problem of sparse signals, and they proved that the sparse signal
x can be recovered with high accuracy if D satisfies the RIP and
the noise is small (see e.g., [19,26]).

Definition 1 ([26] (RIP)). Let D ∈ Rd×m be the sensing matrix,
nd DL (L ⊆ {1, . . . ,m}) be the sub-matrix obtained by extracting
he columns of D corresponding to the indices in the set L. For
given integer s (1 ≤ s ≤ m), we define the s-restricted isometry
constant δs ∈ [0, 1) to be the smallest quantity such that the
following inequality

(1 − δs)∥b∥2
≤ ∥DLb∥2

≤ (1 + δs)∥b∥2 (3)

holds for all real vector b and all subsets Lwith cardinality at most
. Then we say that D satisfies the RIP with order s.

emark 1. From (3), the restricted isometry constant δs reflects
he degree of preservation of the signal’s 2-norm, with δs = 0
eing exactly preserved. The condition (3) is equivalent to that
ll eigenvalues of the matrix DT

LDL lie in [1 − δs, 1 + δs]. More-
ver, from Definition 1, we can see that the s-restricted isometry
onstant δs increases with s.

How to construct the matrix D satisfying the RIP attracts much
ttention of researchers in the fields of information theory and
ignal processing. For example, DeVore in [27] presented a deter-
inistic construction method of sensing matrix using the mutual

ncoherence. Li et al. in [28] proposed a construction method of
he binary sensing matrix via algebraic curves over finite fields.
u et al. constructed a class of special sensing matrices consisting
f partial Fourier matrices in [29]. There is also some literature
ocusing on the construction of random sensing matrices (see
.g., [26,30,31]). In the simulation example given in Section 5, we
se Gaussian matrix D ∈ Rd×m whose entries are independent

realizations of Gaussian random variables with zero mean and
variance 1/d. We have the following result about the matrix D.
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emma 1 ([30]). For given d, m, and 0 < δ < 1, if the sensing
atrix D ∈ Rd×m is a Gaussian or Bernoulli random matrix, then

there exist positive constants c1, c2 depending only on δ such that the
IP (3) holds for D with the prescribed δ and any s ≤ c1d/ log(m/s)

with probability no less than 1 − e−c2d.

Remark 2. In [30], Baraniuk et al. show that the constants c1 and
c2 satisfies the inequality c2 ≤

δ2

16 −
δ3

48 −c1
[
1+

1+log(12/δ)
log(m/s)

]
and the

onstant c1 can be small enough to ensure c2 > 0. For example, if
1 =

δ3

120 , then we can obtain that the sensing D satisfies the RIP
ith probability no less than 1 − e−c2d if d ≥ 120s log(m/s)/δ3.

After constructing the sensing matrix, the recovery problem of
he sparse signal x can be transformed into solving the following
onvex optimization problem,

min
′∈Rm

∥x′
∥1, s.t. ∥Dx′

− z∥ ≤ C . (4)

or the signals obtained by solving the above convex optimiza-
ion problem, Candès, Romberg and Tao in [19] established the
ollowing lemma on the upper bound of the error between the
ecovered signals and original signals.

emma 2 ([19]). Let s satisfy δ3s + 3δ4s < 2. Then for any s-sparse
ignal x and any perturbation ϵ with ∥ϵ∥ ≤ C, the recovered signal
∗ obtained by solving the optimization problem (4) obeys

x∗
− x∥ ≤ CsC,

here the positive constant Cs can be taken as

s ≜
4

√
3(1 − δ4s) −

√
1 + δ3s

.

Remark 3. Note that for s satisfying the condition of Lemma 2, we
can get the true value of the sparse signal by the reconstruction
process if there are no measurement perturbations in (2).

2.3. Graph theory

We consider a sensor network with n sensors. The commu-
nication between sensors are usually modeled as an undirected
weighted graph G = (V, E , A), where V = {1, 2, 3, . . . , n}
s the set of sensors (or nodes), E ⊆ V × V is the edge set,
nd A = {aij} ∈ Rn×n is the weighted adjacency matrix. The
djacency matrix A = {aij} is defined as: aij > 0 if (i, j) ∈ E
nd aij = 0 otherwise. For the sensor i, the set of its neighbors
s denoted as Ni = {j ∈ V|(i, j) ∈ E}, and we assume that
ensor i belongs to Ni. Each sensor can only exchange information
ith its neighbors. A path of length ℓ is a sequence of nodes
i1, . . . , iℓ, iℓ+1} such that (ih, ih+1) ∈ E with 1 ≤ h ≤ ℓ. The graph
is called connected if there is a path between any two nodes.

he diameter DG of the graph G is defined as the maximum
hortest path length between any two sensors. If all the elements
f a matrix A = {aij} ∈ Rn×n are nonnegative, then it is called
nonnegative matrix, and furthermore if

∑n
j=1 aij = 1 holds for

ll i ∈ {1, . . . , n}, then it is a stochastic matrix. For simplicity
f analysis, the performance analysis of the distributed algorithm
roposed in this paper is considered under the condition that the
eighted adjacency matrix A is symmetric and stochastic.

. Compressed distributed LS algorithm

.1. Problem statement

We consider a network consisting of n sensors labeled 1, . . . , n.
or each sensor i, the observation is assumed to obey the follow-
ng discrete-time random regression model,

= ϕT θ + w , t = 0, 1, 2, . . . , (5)
t+1,i t,i t+1,i

3

here yt,i is the scalar observation of the sensor i at time t ,
∈ Rm is an unknown s-sparse parameter vector that needs to
e estimated (i.e., θ has at most s non-zero elements), ϕt,i ∈ Rm

s 3s-sparse random regression vector, and {wt,i} is a measure-
ent noise sequence. The above system model (5) includes many
arameterized systems, such as ARX system and Hammerstein
ystem.
This paper aims at designing a distributed algorithm to iden-

ify the sparse parameter θ by using the observation signals and
parse regression vectors from its neighbors, and establishing the
erformance analysis of the proposed algorithm.

.2. Design of the algorithm

We know that for the general random regression vectors {ϕt,i}

without sparsity, the distributed LS algorithm has been widely
used to estimate the unknown parameter vector θ due to the fast
convergence rate. Xie et al. in [24] introduced a cooperative exci-
tation condition to guarantee the convergence of the distributed
LS algorithm. However, for some cases such as high dimensional
data classification (e.g., [32]), the regression vectors {ϕt,i} may be
parse (i.e., many elements of ϕt,i are zero). Under such a situ-
tion, the cooperative excitation condition mentioned in [24] is
ard to be satisfied. Hence, the classical distributed LS algorithm
s not able to accurately estimate the high-dimensional sparse
ignal θ. In addition, the diffusion of high-dimensional regression
ectors {ϕt,i} over sensor networks is required in the classical
istributed LS algorithm, which may cause high computation cost
nd communication pressure.
Now, we propose the compressed distributed LS algorithm

ased on the CS theory and distributed LS algorithm. To be spe-
ific, each sensor i at the time instant t can receivem-dimensional
parse regression vectors {ϕt,j, j ∈ Ni}. Using the sensing matrix
∈ Rd×m(d ≪ m),1 we can obtain the compressed d-dimensional

egression vectors {φt,j, j ∈ Ni} by

φt,j = Dϕt,j. (6)

Then, the distributed LS algorithm is used to estimate the d-
dimensional parameter

ϑ = Dθ (7)

in the compressed space. Finally, the estimate θt+1,i for the un-
known parameter vector θ is recovered by solving the convex op-
timization problem (4). The details of the compressed distributed
LS algorithm are illustrated in Algorithm 1.

The positive constant C in Step 3 can be actually taken as the
pper bound of the estimation error ∥ϑ̃t,i∥, and the explicit value

of C can be found in Theorem 1 of Section 4.

emark 4. For the reconstruction process (Step 3) in the above
lgorithm 1, there are some algorithms, e.g., orthogonal matching
ursuit (OMP), compressive sampling matching pursuit (CoSaMP),
nd interior-point (IP) algorithms to solve the convex optimiza-
ion problem (11) in the literature, see e.g., [33,34].

.3. Assumptions

In order to analyze the performance of the compressed dis-
ributed LS algorithm, we need to introduce some assumptions on
he observation noise, the network topology, the sensing matrix
nd the regression vectors.

1 d ≪ m means that d is far smaller than m.
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Algorithm 1 Compressed distributed LS algorithm
Input: {ϕt,i, yt+1,i}

n
i=1, t = 0, 1, 2, · · ·

Output: {θt+1,i}
n
i=1, t = 0, 1, 2, · · ·

for every sensor i = 1, · · · , n do
Initialization: Begin with an initial vector ϑ0,i and an
initial positive definite matrix P0,i > 0.
for each time t = 0, 1, 2, · · · do

Step 1. Compression: φt,i = Dϕt,i.
Step 2. Estimation in a low-dimensional dimension.
(i) Adaption.

ϑ̄t+1,i = ϑt,i + dt,iP t,iφt,i(yt+1,i − φT
t,iϑt,i),

P̄ t+1,i = P t,i − dt,iP t,iφt,iφ
T
t,iP t,i, (8)

dt,i = (1 + φT
t,iP t,iφt,i)

−1,

(ii) Diffusion.

P−1
t+1,i =

∑
j∈Ni

aijP̄
−1
t+1,j, (9)

ϑt+1,i = P t+1,i

∑
j∈Ni

aijP̄
−1
t+1,jϑ̄t+1,j. (10)

Step 3. Restruction:

θt+1,i = argminβ∈B∥β∥1 (11)

where B =

{
β ∈ Rm

⏐⏐⏐∥Dβ − ϑt+1,i∥ ≤ C
}

Assumption 1. For any i ∈ {1, . . . , n}, the noise sequence
wt,i, Ft} is a martingale difference sequence, and there exists a
onstant γ > 2, such that

up
t≥0

E(|wt+1,i|
γ
|Ft ) < ∞, a.s.

where Ft = σ {φk,i, wk,i, k ≤ t, i = 1, . . . , n} is a sequence
of non-decreasing σ -algebras and E[·|·] denotes the conditional
expectation operator.

We can verify that the i.i.d. (independent and identically dis-
tributed) zero-mean bounded or Gaussian noise {wt,i} which are
independent of the regressors can satisfy Assumption 1.

Assumption 2. The undirected communication graph G is con-
nected and the weighted adjacency matrix A is symmetric and
stochastic.

Remark 5. In Assumption 2, we require that the matrix A is
symmetric and stochastic which is used to study the nonnegative
definite properties of ∆t+1 (see Lemma 3). For the directed graph
case, if G is strongly connected and balanced, then Lemma 3 still
holds by revising ∆t+1 as ∆′

t+1 ≜ P̄ t+1 − (AT
⊗ Id)P t+1(A ⊗ Id).

Thus, we can obtain similar theoretical results by following the
proof line of Theorems 1 and 2.

Assumption 3. The sensing matrix D ∈ Rd×m satisfies the RIP
with order 4s where the 3s- and 4s-restricted isometry constants
denoted as δ3s and δ4s (see Definition 1) satisfy δ3s + 3δ4s < 2.

Remark 6. The above properties (RIP) of the sensing matrix
D which is often used in the compressive sensing theory can
guarantee that the sparse signals can be recovered with high
accuracy (see Lemma 2).
4

Assumption 4 (Compressed Cooperative Persistent Excitation Con-
dition). There exists a positive constant M such that for the
adapted sequence {φt,i, Ft , t ≥ 0},

λ
n,t
min −−−→

t→∞
∞, sup

t≥0

rt
λ
n,t
min

≤ M,

here rt ≜ λmax(
∑n

i=1 P
−1
0,i ) +

∑n
i=1
∑t

k=0 ∥φk,i∥
2, and

n,t
min ≜ λmin

( n∑
i=1

P−1
0,i +

n∑
i=1

t−DG +1∑
k=0

φk,iφ
T
k,i

)
.

emark 7. We provide an intuitive illustration for the above ex-
itation condition of the compressed signals. Consider an extreme
ase where all regression vectors {ϕk,i} are equal to zero, it is clear
that the unknown sparse parameter θ cannot be estimated since
the measurement signal yt,i does not contain any information
about θ. In order to estimate θ, we need to impose some excita-
tion conditions on the regression vectors. The following persistent
excitation condition for the single sensor case is commonly used
for the convergence analysis of LS algorithm in the literature (see
e.g., [35,36]),

sup
t≥0

λmax

(∑t
k=1 ϕk,iϕ

T
k,i

)
λmin

(∑t
k=1 ϕk,iϕ

T
k,i

) < ∞. (12)

However, it is difficult for the sparse regression vectors {ϕk,i} to
satisfy the above excitation condition (see the simulation exam-
ple in Section 5). Hence, we propose the compressed coopera-
tive persistent excitation condition (Assumption 4) where ϕk,i is
replaced by the compressed signal φk,i.

4. Performance analysis of the algorithm

Now, we will provide the performance analysis for the com-
pressed distributed LS algorithm. By (5), we have

yt+1,i = φT
t,iϑ + ϕT

t,iθ − φT
t,iϑ + wt+1,i

= φT
t,iϑ + ϕT

t,i(Im − DTD)θ + wt+1,i. (13)

Set

w̄t+1,i ≜ ξt,i + wt+1,i, ξt,i = ϕT
t,i(Im − DTD)θ, (14)

where w̄t+1,i can be regarded as the‘‘new" noise, and ξt,i is called
the sensing deviation. Then by (14), the dynamical system (13)
can be rewritten as

yt+1,i = φT
t,iϑ + w̄t+1,i. (15)

Denote the compressed estimation error as

ϑt,i = ϑ − ϑt,i. (16)

Then by (8) and (15), we have

ϑ − ϑ̄t+1,i = ϑ − ϑt,i − dt,iP t,iφt,i(yt+1,i − φT
t,iϑt,i)

= (Id − dt,iP t,iφt,iφ
T
t,i )̃ϑt,i − dt,iP t,iφt,iw̄t+1,i

= P̄ t+1,iP−1
t,i ϑ̃t,i − dt,iP t,iφt,iw̄t+1,i.

Hence by (9) and 10, the error ϑ̃t,i in the compressed space
evolves according to the following equation

ϑt+1,i = P t+1,i

∑
j∈Ni

aijP−1
t,j ϑ̃t,j

− P t+1,i

∑
j∈Ni

aijP̄
−1
t+1,jdt,jP t,jφt,jw̄t+1,j. (17)
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Denote Y t = col{yt,1, . . . , yt,n} and

t = col{wt,1, . . . , wt,n}, Ξ t = col{ξt,1, . . . , ξt,n},
W t = col{w̄t,1, . . . , w̄t,n}, Z̃ t = col{̃ϑt,1, . . . , ϑ̃t,n},

t = diag{dt,1, . . . , dt,n}, Ψ t = diag{φt,1, . . . ,φt,n},

¯ t = diag{P̄ t,1, . . . , P̄ t,n}, P t = diag{P t,1, . . . , P t,n},

here col(·, . . . , ·) denotes a vector stacked by the specified vec-
ors, and diag(·, . . . , ·) denotes a block matrix formed in a di-
gonal manner of the corresponding vectors or matrices. Then
ynamical system (15) and error Eq. (17) can be written as the
ollowing matrix forms,

t+1 = Ψ T
t Z + W t+1,

Z̃ t+1 = P t+1(A ⊗ Id)P−1
t Z̃ t

− P t+1(A ⊗ Id)P̄
−1
t+1(dt ⊗ Id)P tΨ tW t+1. (18)

We will first consider the upper bound of the compressed esti-
mation error Z̃ t+1. For this, we introduce function Vt = Z̃T

t P
−1
t Z̃ t .

By following the proof line of [24], we can obtain a preliminary
result of Vt .

Lemma 3. Under Assumption 2, we have the following inequality,

Vt+1 +

t∑
k=0

Z̃T
kΨ kdkΨ

T
k Z̃k +

t∑
k=0

Z̃T
kP

−1
k ∆k+1P−1

k Z̃k

≤ V0 − 2
t∑

k=0

Z̃T
kP

−1
k P̄k+1Ψ kW k+1

+ 2
t∑

k=0

Z̃T
kP

−1
k ∆k+1Ψ kW k+1

+

t∑
k=0

W
T
k+1dkΨ

T
kPkΨ kW k+1, (19)

here ∆t+1 ≜ P̄ t+1−(A⊗Id)P t+1(A⊗Id) is a nonnegative definite
atrix satisfying ∆t+1 ≤ P̄ t+1.

In the following, we will analyze the last three terms on the
right hand side (RHS) of (19). We note that the estimation step
(i.e., Step 2 in Algorithm 1) is obtained by using the compressed
regression vector φt,i = Dϕt,i not the original regression vector
ϕt,i, which leads to the sensing deviation term ξt,i defined in (14).
Unlike the measurement noise wt+1,i, ξt,i generally has no good
statistical properties, such as independency, martingale differ-
ence sequence, which makes it hard to use the theoretical results
in probability theory and stochastic process in our analysis. We
will use the properties of the sensing matrix D to deal with the
cumulative effect of sensing deviation ξt,i.

Lemma 4. Under Assumption 3, the following inequality for the
sensing deviation holds

∥Ξ t∥
2

≤
9δ24s∥θ∥

2

1 − δ4s

n∑
i=1

∥φt,i∥
2. (20)

roof. Denote the set

t,i =

{
l(1)t,i , . . . , l

(3s)
t,i , j(1), . . . , j(s)

}
,

here l(1)t,i , . . . , l
(3s)
t,i are the indices of 3s nonzero elements of ϕt,i

nd j(1), . . . , j(s) are the indices of s nonzero elements of θ. The
nalysis for the case where the cardinality of Λt,i is less than 4s
i.e., part of the nonzero elements of the vectors ϕt,i and θ are in
he same position) is almost the same as that for the case where
5

the set Λt,i has 4s elements. Thus, we just consider the latter.
The vectors obtained by extracting the 4s nonzero elements from
ϕt,i and θ are denoted as ϕ

(4s)
t,i and θ̆

(4s)
t,i , and the indices of these

4s elements come from the set Λt,i. Correspondingly, we extract
the 4s columns from the matrix D, and denote the new matrix as
D(4s)

t,i .
By Assumption 3 and Remark 1, we see that all eigenvalues of

the matrix (D(4s)
t,i )

TD(4s)
t,i lie in the interval [1 − δ4s, 1 + δ4s]. Thus,

we have

|ξt,i| =
ϕT

t,i(Im − DTD)θ


=

(ϕ(4s)
t,i

)T [
I4s −

(
D(4s)

t,i

)T
D(4s)

t,i

]
θ̆
(4s)
t,i


≤

(ϕ(4s)
t,i

)T [
(1 + δ4s)I4s −

(
D(4s)

t,i

)T
D(4s)

t,i

]
θ̆
(4s)
t,i


+ δ4s

(ϕ(4s)
t,i

)T
θ̆
(4s)
t,i


≤

(ϕ(4s)
t,i )

T
 ·

(1 + δ4s)I4s −

(
D(4s)

t,i

)T
D(4s)

t,i

 ·

θ̆(4s)
t,i


+ δ4s

(ϕ(4s)
t,i

)T
θ̆
(4s)
t,i


≤ 2δ4s

ϕ(4s)
t,i

 ·

θ̆(4s)
t,i

+ δ4s

ϕ(4s)
t,i

 ·

θ̆(4s)
t,i


= 3δ4s

ϕt,i

 · ∥θ∥ ≤
3δ4s

√
1 − δ4s

∥Dϕt,i∥ · ∥θ∥

=
3δ4s

√
1 − δ4s

∥φt,i∥∥θ∥. (21)

y Ξ t = col{ξt,1, . . . , ξt,n}, we see that the result of the lemma
holds. ■

Lemma 5. Under Assumptions 1–3, the following result holds
almost surely,

ZT
t+1P

−1
t+1Z̃ t+1 ≤ O(log rt ) +

54δ24s
1 − δ4s

∥θ∥2rt .

Proof. By the definition of W t+1 and Ξ t , we have W t+1 =

t + W t+1. Therefore, we have
t∑

k=0

W
T
k+1dkΨ

T
kPkΨ kW k+1

≤

t∑
k=0

λmax(dkΨ
T
kPkΨ k)∥Ξ k + W k+1∥

2

≤ 2
t∑

k=0

λmax(dkΨ
T
kPkΨ k)(∥Ξ k∥

2
+ ∥W k+1∥

2). (22)

ubstituting (22) into (19), we have

Vt+1 +

t∑
k=0

Z̃T
kΨ kdkΨ

T
k Z̃k +

t∑
k=0

Z̃T
kP

−1
k ∆k+1P−1

k Z̃k

≤ V0 − 2
t∑

k=0

Z̃T
kP

−1
k P̄k+1Ψ kW k+1

+ 2
t∑

k=0

Z̃T
kP

−1
k ∆k+1Ψ kW k+1

+ 2
t∑

λmax(dkΨ
T
kPkΨ k)∥W k+1∥

2

k=0
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U
m
t
d∑

∑

∑

o

d

C

P

H

P

B
R

≤

w
L

≤

≤

w

w

− 2
t∑

k=0

Z̃T
kP

−1
k P̄k+1Ψ kΞ k

+ 2
t∑

k=0

Z̃T
kP

−1
k ∆k+1Ψ kΞ k

+ 2
t∑

k=0

λmax(dkΨ
T
kPkΨ k)∥Ξ k∥

2. (23)

sing the martingale convergence theorem and martingale esti-
ation theorem, we have the following results for the second to

he fourth term on the RHS of (23) (see Lemma 4.4 in [24] for
etails),
t

k=0

Z̃T
kP

−1
k P̄k+1Ψ kW k+1

= O(1) + o
( t∑

k=0

Z̃T
kΨ kdkΨ

T
k Z̃k

)
, (24)

t

k=0

Z̃T
kP

−1
k ∆k+1Ψ kW k+1

= O(1) + o
( t∑

k=0

Z̃T
kP

−1
k ∆k+1P−1

k Z̃k

)
, (25)

t

k=0

λmax(dkΨ
T
kPkΨ k)∥W k+1∥

2
= O(log rt ). (26)

In the following, we estimate the last three terms on the RHS
f (23). By the definition of dk,i, we have

k,iφ
T
k,iPk,iφk,i = 1 − dk,i. (27)

ombining this equation with (8), we can deduce that
−1
k,i P̄k+1,iφk,i = φk,i − dk,iφk,iφ

T
k,iPk,iφk,i

= φk,i − φk,i(1 − dk,i) = φk,idk,i.

ence we have
−1
k P̄k+1Ψ k = Ψ kdk. (28)

y (28) and Hölder inequality, we see that the fifth term on the
HS of (23) satisfies the following inequality2 t∑

k=0

Z̃T
kP

−1
k P̄k+1Ψ kΞ k

 = 2
 t∑

k=0

Z̃T
kΨ kdkΞ k


2

(
t∑

k=0

Z̃T
kΨ kdkΨ

T
k Z̃k

) 1
2
(

t∑
k=0

∥Ξ k∥
2

) 1
2

,

here the fact dk ≤ In is used in the last inequality. Hence by
emma 4, we have2 t∑

k=0

Z̃T
kP

−1
k P̄k+1Ψ kΞ k


(

t∑
k=0

Z̃T
kΨ kdkΨ

T
k Z̃k

) 1
2

·
6δ4s∥θ∥
√
1 − δ4s

(
t∑

k=0

n∑
i=1

∥φk,i∥
2

) 1
2

(∑t
k=0 Z̃

T
kΨ kdkΨ

T
k Z̃k

)

2 f

6

+
18δ24s∥θ∥

2

1 − δ4s

(
t∑

k=0

n∑
i=1

∥φk,i∥
2

)
, (29)

here the inequality xy ≤
x2+y2

2 is used.
From (28), we have

∆k+1Ψ kΨ
T
k∆k+1

≤ (λmax(Ψ T
k∆k+1Ψ k))∆k+1

≤ λmax(Ψ T
k P̄k+1Ψ k)∆k+1

= λmax(Ψ T
kPkΨ kdk)∆k+1 ≤ ∆k+1. (30)

Similar to the analysis of (29), we can deduce that the sixth term
on the RHS of (23) satisfies the following inequality,2 t∑

k=0

Z̃T
kP

−1
k ∆k+1Ψ kΞ k


≤

 t∑
k=0

Z̃T
kP

−1
k ∆k+1Ψ kΨ

T
k∆k+1P−1

k Z̃k

 1
2

·2

(
t∑

k=0

Ξ k

2) 1
2

≤

 t∑
k=0

Z̃T
kP

−1
k ∆k+1P−1

k Z̃k

 1
2

·
6δ4s

√
1 − δ4s

∥θ∥

(
t∑

k=0

n∑
i=1

∥φk,i∥
2

) 1
2

≤

∑t
k=0 Z̃

T
kP

−1
k ∆k+1P−1

k Z̃k


2

+
18δ24s
1 − δ4s

∥θ∥2

(
t∑

k=0

n∑
i=1

∥φk,i∥
2

)
, (31)

where the inequality (30) is used in the second inequality.
For the last term on the RHS of (23), we have the following

inequalities

2
t∑

k=0

λmax(dkΨ
T
kPkΨ k)∥Ξ k∥

2
≤ 2

(
t∑

k=0

∥Ξ k∥
2

)

≤
18δ24s
1 − δ4s

∥θ∥2

(
t∑

k=0

n∑
i=1

∥φk,i∥
2

)
, (32)

where (20) and the fact λmax(dkΨ
T
kPkΨ k) ≤ 1 are used.

Substituting (24)–(26), (29), (31) and (32) into (23) yields

Vt+1 +

(
1
2

+ o(1)
) t∑

k=0

Z̃T
kΨ kdkΨ

T
k Z̃k

+

(
1
2

+ o(1)
) t∑

k=0

Z̃T
kP

−1
k ∆k+1P−1

k Z̃k

≤ O(log rt ) +
54δ24s
1 − δ4s

∥θ∥2

(
t∑

k=0

n∑
i=1

∥φk,i∥
2

)

≤ O(log rt ) +
54δ24s
1 − δ4s

∥θ∥2rt , (33)

hich completes the proof of the lemma. ■

In fact, if the regression vectors ϕt,i are bounded, then by
ollowing the proof line of the above lemma, we can obtain a
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c
s

r

e

∥

λ

L

P

1

1

ertain non-asymptotic performance of the estimation error as
hown for the classical LS algorithm in [37] and [38].
According to the above lemma, we can easily get the following

esult on the upper bound of the estimation error Z̃ t+1.

Theorem 1. Suppose that Assumptions 1–4 hold. The compressed
stimation error Z̃ t+1 has the following upper bound,

Z̃ t+1∥
2

= O
(

C2
s δ24s

1 − δ4s

)
. a.s. (34)

Proof. By the matrix inversion formula (1) and (8), we have
P̄−1

t+1,i = P−1
t,i + ϕt,iϕ

T
t,i. Then by (9), we have the following

equation,

P−1
t+1,i =

n∑
j=1

t∑
k=0

a(t+1−k)
ij ϕk,jϕ

T
k,j +

n∑
j=1

a(t+1)
ij P−1

0,j ,

where a(t)ij is the ith row, jth column entry of the weight matrix
At , t ≥ 1. Note that by Assumption 2, we see that amin ≜

mini,j∈V a(DG )
ij > 0 holds for t ≥ DG . Thus, we have

min(P−1
t+1,i) ≥ aminλ

n,t
min. (35)

By (35) and Lemma 5, we have

∥Z̃ t+1∥
2

≤ O
(
log rt
λ
n,t
min

)
+

54δ24s∥θ∥
2

1 − δ4s

rt
λ
n,t
min

. a.s. (36)

By (36) and Assumption 4, the result of the theorem can be
obtained. ■

Remark 8. By (36), we see that the upper bound of the esti-
mation error Z̃ t+1 consists of two parts: the first part is mainly
caused by the measurement noise wt,i, and the second part is
mainly concerned with the sensing deviation ξt,i defined in (14).
Under Compressed Cooperative Persistent Excitation Condition
(Assumption 4), the first part tends to zero as t → ∞, and
the second part tends to zero as the 4s-restricted isometry con-
stant δ4s goes to zero. Furthermore, by Remark 2, we can see
that the δ4s can be arbitrarily small when the dimension of the
sensing matrix D satisfies the inequality d ≥ 480s log(m/4s)/δ34s.
How to relax Assumption 4 to non-persistent excitation condition
(e.g., [39]) requires new techniques to deal with the sensing
deviation, which falls into our future work.

Theorem 2. Under Assumptions 1–4, we have the following upper
bound for the estimation error of the compressed distributed LS
algorithm for any i ∈ {1, . . . , n},

∥̃θt+1,i∥
2

= O
(

C2
s δ24s

1 − δ4s

)
, a.s.,

where θ̃t+1,i = θ − θt+1,i and Cs =
4√

3(1−δ4s)−
√

1+δ3s
defined in

emma 2.

roof. Note that ϑ̃t+1,i = Dθ−ϑt+1,i. According to Theorem 1, the

constant C in Algorithm 1 can be taken as C =

√
55Mδ24s∥θ∥

2

1−δ4s
with

M being defined in Assumption 4. Furthermore, by Assumption 4
and Lemma 2, we have for large t

∥θt+1,i − θ∥ ≤ Cs

√
55Mδ24s∥θ∥

2

1 − δ4s
a.s. (37)

This completes the proof of the theorem. ■
7

Remark 9. By the definition of RIP (Definition 1), we have
δ3s ≤ δ4s. It is clear that by (37), the estimation error θ̃t,i of the
compressed DLS algorithm goes to zero as δ4s tends to zero.

Remark 10. Compared with [21], our results for the performance
analysis of the compressed distributed LS algorithm in this paper
(see Theorems 1 and 2) are derived without using any indepen-
dency or stationarity assumptions on the regression vectors. It is
clear that our results are more applicable to practical feedback
systems.

5. A simulation example

In this section, we provide an example to illustrate the perfor-
mance of the compressed distributed LS algorithm proposed in
this paper.

Example 1. Consider a network composed of n = 20 sensors
whose dynamics obey the following model

yt+1,i = ϕT
t,iθ + wt+1,i (38)

with the dimension m = 300. The noise sequence {wt,i, t ≥

1, i = 1, . . . , n} in (5) is independent and identically distributed
with wt,i ∼ N (0, 0.04) (Gaussian distribution with zero mean
and variance 0.04). The regression vectors {ϕt,i ∈ R300, i =

, . . . , 20, t ≥ 1} are generated according to the following
expression,

ϕt,i =

[
0, . . . , 0, 1.1t

+

t−1∑
k=0

1.1kεt−k,i  
ith

, 0, . . . , 0
]T

, (39)

where the noise sequences {εt,i, i = 1, . . . , 20, t ≥ 1} in (39) are
independent and uniformly distributed in (0, 0.1). All sensors will
estimate an unknown 3-sparse parameter
θ = [0, . . . , 0  

297

, 2.4, 3.5, 4.6]T .

The initial estimate is taken as θ0,i = [0.8, . . . , 0.8  
300

]
T for i =

, 2, . . . , 20. The network structure is shown in Fig. 1. Here we
use the Metropolis rule in [40] to construct the weights, i.e.,

ali =

⎧⎨⎩1 −

∑
j̸=i

aij if l = i

1/(max{ni, nl}) if l ∈ Ni \ {i}
, (40)

where ni is the degree of the node i.

From the definition of the noise sequence {wt,i}, we see that
Assumption 1 holds. By (40) and the structure of the network
topology in Fig. 1, Assumption 2 can be satisfied. We estimate
the unknown sparse parameter θ by using the compressed dis-
tributed LS algorithm, the distributed LS algorithm in [24] and
regularized distributed LS algorithm with l1 penalty (where the
construction of the regularized parameter is chosen similar to
that in [41]), respectively. In the compressed distributed LS algo-
rithm, the sensing matrix D is selected as a 15×300-dimensional
random matrix whose elements are Gaussian random variables
with zero mean and variance 1/15. Baraniuk et al. in [30] showed
that such a sensing matrix can satisfy RIP condition (3) with
probability no less than 1 − 2e−dc̄ for some positive constant c̄
(see Lemma 1). For the decompression procedure (i.e., Step 3 in
Algorithm 1), the OMP algorithm is used to solve the optimization
problem (11). It can be shown that the compressed regression
vector φt,i = Dϕt,i can satisfy the compressed cooperative persis-
tent excitation condition (i.e., Assumption 4), while the original
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Fig. 1. Network topology of 20 sensors.

Fig. 2. The MSEs of the compressed distributed LS algorithm, the distributed LS
algorithm in [24], and the regularized distributed LS with l1 penalty.

egression vector ϕt,i cannot satisfy the cooperative excitation
condition used in [24].

We repeat the simulation for 200 times with the same ini-
tial value, and the simulation results are shown in Fig. 2. We
can see that the mean square error (MSE) of our compressed
distributed LS algorithm is much smaller than that of the dis-
tributed LS algorithm in [24], and is also smaller than that of
the regularized distributed LS algorithm with l1 penalty, which
means that for the sparse regression vectors, the compressed
distributed LS algorithm has better estimation performance than
the non-compressed distributed LS algorithms.

6. Concluding remarks

This paper proposes a compressed distributed algorithm to
estimate unknown high-dimensional sparse signals based on the
distributed LS algorithm and the CS theory. We provide an up-
per bound for the estimation error of compressed signals under
the compressed cooperative persistent excitation condition, and
further establish the upper bound for the estimation error of the
original high-dimensional sparse signals. We give a simulation
result to show that the compressed distributed LS algorithm
proposed in this paper can estimate the high-dimensional sparse
signals while the non-compressed distributed algorithms may
8

not. Many interesting problems deserve to be further investi-
gated, for example, the relaxation of the compressed cooperative
persistent excitation condition, the optimization of the sensing
matrix and the combination of distributed adaptive identification
and control (e.g., [39,42]).
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