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Stability of FFLS-Based Diffusion Adaptive Filter
Under Cooperative Excitation Condition

Die Gan , Member, IEEE, Siyu Xie , Zhixin Liu , Member, IEEE, and Jinhu Lü , Fellow, IEEE

Abstract—In this article, we consider the distributed fil-
tering problem over sensor networks such that all sen-
sors cooperatively track unknown time-varying parameters
by using local information. A distributed forgetting factor
least squares algorithm is proposed by minimizing a local
cost function formulated as a linear combination of ac-
cumulative estimation error. Stability analysis of the algo-
rithm is provided under a cooperative excitation condition
which contains spatial union information to reflect the co-
operative effect of all sensors. Furthermore, we generalize
theoretical results to the case of Markovian switching di-
rected graphs. The main difficulties of theoretical analysis
lie in how to analyze properties of the product of noninde-
pendent and nonstationary random matrices. Some tech-
niques, such as stability theory, algebraic graph theory,
and Markov chain theory are employed to deal with the
above issue. Our theoretical results are obtained without
relying on the independence or stationarity assumptions of
regression vectors which are commonly used in existing
literature. Finally, numerical simulations are provided to
demonstrate the effectiveness of our theoretical results.

Index Terms—Cooperative excitation condition, dis-
tributed forgetting factor least squares (FFLS), exponential
stability, Markovian switching topology, stochastic dynamic
systems.

I. INTRODUCTION

OWING to the capability to process the collaborative
data, wireless sensor networks have attracted increas-

ing research attention in diverse areas, including consensus
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seeking [1], [2], resource allocation [3], [4], and formation con-
trol [5], [6]. How to design the distributed adaptive estimation
and filtering algorithms to cooperatively estimate unknown pa-
rameters has become one of the most important research topics.
Compared with centralized estimation algorithms where a fusion
center is needed to collect and process information measured by
all sensors, the distributed ones can estimate or track an unknown
parameter process of interest cooperatively by using local noisy
measurements. Therefore, the distributed algorithms are easier
to be implemented because of their robustness to network link
failure, privacy protection, and reduction on communication and
computation costs.

Based on classical estimation algorithms and typical dis-
tributed strategies, such as the incremental, diffusion and con-
sensus, a number of distributed adaptive estimation or filtering
algorithms have been investigated (cf., [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]), e.g., the consensus-
based least mean squares (LMS), the diffusion recursive least
squares (RLS), the incremental LMS, and the diffusion forget-
ting factor least squares (FFLS). The performance analysis of the
distributed algorithms is also studied under some information
conditions. For deterministic signals or deterministic system
matrices, Battistelli and Chisci in [7] provided the mean-square
boundedness of the state estimation error of the distributed
Kalman filter algorithm under a collectively observable con-
dition. Chen et al. [8] studied the convergence of distributed
adaptive identification algorithm under a cooperative persistent
excitation (PE) condition. Javed et al. [9] presented stability
analysis of the cooperative gradient algorithm for the determinis-
tic regression vectors satisfying a cooperative PE condition. Note
that the signals are often random since they are generated from
dynamic systems affected by noises. For the random regression
vector case, Barani et al. [10] studied the convergence of dis-
tributed stochastic gradient descent algorithm with independent
and identically distributed (i.i.d.) signals. Schizas et al. [11] pro-
vided the stability analysis of a distributed LMS-type adaptive
algorithm under the strictly stationary and ergodic regression
vectors. Zhang et al. [12] studied the mean square performance
of a diffusion FFLS algorithm with independent input signals.
Mateos and Giannakis in [15] presented the stability and per-
formance analysis of the distributed FFLS algorithm under the
spatio-temporally white regression vectors condition.

We remark that most theoretical results mentioned in above
literature were established by requiring regression vectors to be
either deterministic and satisfy PE conditions, or random but
satisfy independence, stationarity, and ergodicity conditions. In
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fact, the observed data are often random and hard to satisfy
the above statistical assumptions, since they are generated by
complex dynamic systems where feedback loops inevitably
exist ([20]). The main difficulty in the performance analysis
of distributed algorithms is to analyze the product of random
matrices involved in estimation error equations. In order to relax
the above stringent conditions on random regression vectors,
some progress has been made on distributed adaptive estimation
and filtering algorithms under undirected graphs. For estimat-
ing time-invariant parameters, the convergence analysis of the
distributed SG algorithm and the distributed RLS algorithm is
provided in [21] and [22] under cooperative excitation condi-
tions. For tracking a time-varying parameter, Xie and Guo in [16]
and [23] proposed the weakest possible cooperative informa-
tion conditions to guarantee the stability and performance of
consensus-based and diffusion-based LMS algorithms. As we
know, an unfortunate property of the traditional RLS estimator
is that the gain rapidly tends to zero, which makes the ability of
RLS estimator to track time-varying parameters lost. The FFLS
algorithm incorporates a forgetting factor to place more weight
on recent observations which can overcome this deficiency in
some sense. Moreover, compared with the LMS algorithm, the
FFLS algorithm can generate more accurate estimates in the
transient phase [24], but the stability analysis for the distributed
FFLS algorithm is still lacking. This article focuses on the
design and stability analysis of the distributed FFLS algorithm
without relying on the independence, stationarity, or ergodicity
assumptions on regression vectors.

The information exchange between sensors is an important
factor for the performance of distributed estimation algorithms,
and previous studies often assume that the networks are undi-
rected and time-invariant (cf., [16], [21], [22], [23]). In practice,
they might not be bidirectional or time-invariant due to the het-
erogeneity of sensors and signal losses caused by the temporary
deterioration in the communication link. One approach is to
model the networks which randomly change over time as an
i.i.d. process, see, e.g., [25], [26]. However, the loss of con-
nection usually occurs with correlations [27]. Another approach
is to model the random switching process as a Markov chain
whose states correspond to possible communication topologies,
see [2], [27], [28], [29] among many others. Some studies
on the distributed algorithms with deterministic or temporally
independent measurement matrix under Markovian switching
topologies are given in [30] and [31].

In this article, we consider the distributed filtering problem
over sensor networks where all sensors aim at collectively track-
ing an unknown randomly time-varying parameter vector. We
first introduce a forgetting factor into the local accumulative cost
function formulated as a linear combination of local estimation
errors between the observation signals and the prediction signals.
By minimizing the local cost function, we propose the dis-
tributed FFLS algorithm based on the diffusion strategy over the
fixed undirected graph. The stability analysis of the distributed
FFLS algorithm is provided under a cooperative excitation con-
dition. Moreover, we generalize the theoretical results to the
case of Markovian switching directed sensor networks. The main

contributions of this article can be summarized as the following
aspects.

1) In comparison with [16] and [21], the random matri-
ces in the error equation of the diffusion FFLS algo-
rithm are not symmetric and the adaptive gain is no
longer a scalar. We establish the exponential stability
of the homogeneous part of the estimation error equa-
tion and the bound of the tracking error by virtue of
the specific structure of the proposed diffusion FFLS
algorithm and the stability theory of stochastic dynamic
systems.

2) Different from the theoretical results of distributed FFLS
algorithms in [12] and [15], where regression vectors are
required to satisfy the independent or spatio-temporally
uncorrelated assumptions, our theoretical analysis is ob-
tained without relying on such stringent conditions, which
makes it possible to be applied to the stochastic feedback
systems.

3) The cooperative excitation condition introduced in this ar-
ticle is a temporal and spatial union information condition
on the random regression vectors, which can reveal the
cooperative effect of multiple sensors in a certain sense,
i.e., the whole sensor network can cooperatively finish the
estimation task, even if any individual sensor cannot due
to lack of necessary information.

The rest of this article is organized as follows. In Section II,
we give the problem formulation of this article. Section III
presents the distributed FFLS algorithm. The stability of the
proposed algorithm under fixed undirected graph and Markovian
switching directed graphs are given in Sections IV and V,
respectively. Simulation examples are provided in Section VI.
Finally, Section VII concludes this article.

II. PROBLEM FORMULATION

A. Matrix Theory

In this article, we use Rm to denote the set of m-dimensional
real vectors, Rm×n to denote the set of real matrices with m
rows and n columns, and Im to denote the m-dimensional
square identity matrix. For a matrix A ∈ R

m×n, ‖A‖ denotes
its Euclidean norm, i.e., ‖A‖ � (λmax(AAT ))

1
2 , where the

notation T denotes the transpose operator and λmax(·) denotes
the largest eigenvalue of the matrix. Correspondingly, λmin(·)
and tr(·) denote the smallest eigenvalue and the trace of the
matrix, respectively. The notation col(·, . . . , ·) is used to denote
a vector stacked by the specified vectors, and diag(·, . . . , ·) is
used to denote a block matrix formed in a diagonal manner of
the corresponding vectors or matrices.

For a matrix A = [aij ] ∈ R
m×m, if

∑m
j=1 aij = 1 holds for

all i = 1, . . . ,m, then it is called stochastic. The Kronecker
product of two matrices A and B is denoted by A⊗B. For two
real symmetric matrices X ∈ R

n×n and Y ∈ R
n×n, X ≥ Y

(X > Y , X ≤ Y , X < Y ) means that X − Y is a semipos-
itive (positive, seminegative, negative) definite matrix. For a
matrix sequence {At} and a positive scalar sequence {at}, the
equation At = O(at) means that there exists a positive constant
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C independent of t and at such that ‖At‖ ≤ Cat holds for all
t ≥ 0.

The matrix inversion formula is often used in this article and
we list it as follows.

Lemma 2.1 (Matrix inversion formula [32]): For any matri-
ces A, B, C, and D with suitable dimensions, the following
formula:

(A+BDC)−1 = A−1 −A−1B(D−1 +CA−1B)−1CA−1

holds, provided that the relevant matrices are invertible.

B. Graph Theory

We use graphs to model the communication topology between
sensors. A directed graphG = (V, E ,A) is composed of a vertex
set V = {1, 2, 3, . . . , n} which stands for the set of sensors
(i.e., nodes), E ⊂ V × V is the edge set, and A = [aij ]1≤i,j≤n

is the weighted adjacency matrix. A directed edge (i, j) ∈ E
means that the jth sensor can receive the data from the ith
sensor, and sensors i and j are called the parent and child
sensors, respectively. The elements of matrixA satisfyaij > 0 if
(i, j) ∈ E and aij = 0 otherwise. The in-degree and out-degree
of sensor i are defined by degin(i) =

∑n
j=1 aji and degout(i) =∑n

j=1 aij , respectively. The digraph G is called balanced if
degin(i) = degout(i) for i = 1, . . ., n. Here, we assume that A
is a stochastic matrix. The neighbor set of i is denoted as
Ni = {j ∈ V, (j, i) ∈ E}, and the sensor i is also included in
this set. For a given positive integer k, the union of k digraphs
{Gj = (V, Ej ,Aj), 1 ≤ j ≤ k} with the same node set is de-
noted by ∪k

j=1Gj = (V,∪k
j=1Ej , 1

k

∑k
j=1 Aj). A directed path

from i1 to il consists of a sequence of sensors i1, i2, . . .il(l ≥ 2),
such that (ik, ik+1) ∈ E for k = 1, . . ., l − 1. The digraph G
is said to be strongly connected if for any senor there exist
directed paths from this sensor to all other sensors. For the graph
G = (V, E ,A), if aij = aji for all i, j ∈ V , then it is called an
undirected graph. The diameter DG of the undirected graph G is
defined as the maximum shortest length of paths between any
two sensors.

C. Observation Model

Consider a network consisting of n sensors (labeled 1, . . . , n)
whose task is to estimate an unknown time-varying parameter θt

by cooperating with each other. We assume that the measurement
{yt,i,ϕt,i} at the sensor i obeys the following discrete-time
stochastic regression model:

yt+1,i = ϕT
t,iθt + wt+1,i (1)

where yt,i is the scalar output of the sensor i at time t,ϕt,i ∈ R
m

is the random regression vector, {wt,i} is a noise process, and θt

is the unknown m-dimensional time-varying parameter whose
variation at time t is denoted by Δθt, i.e.,

Δθt � θt+1 − θt, t ≥ 0. (2)

Note that when Δθt ≡ 0, θt becomes a constant vector. For
the special case where wt+1,i is a moving average process and

Algorithm 1: Standard noncooperative FFLS algorithm.

For any given sensor i ∈ {1, . . ., n}, begin with an initial
estimate θ̂0,i ∈ R

m and an initial positive definite matrix
P̂ 0,i ∈ R

m×m. The standard FFLS is recursively defined at
time t ≥ 0 as follows:

θ̂t+1,i = θ̂t,i +
P̂ t,iϕt,i

α+ϕT
t,iP̂ t,iϕt,i

(yt+1,i −ϕT
t,iθ̂t,i),

P̂ t+1,i =
1

α

(
P̂ t,i −

P̂ t,iϕt,iϕ
T
t,iP̂ t,i

α+ϕT
t,iP̂ t,iϕt,i

)
.

ϕt,i consists of current and past input–output data, i.e.,

ϕT
t,i = [yt,i, . . . , yt−p,i, ut,i, . . . , ut−q,i]

with ut,i being the input signal of the sensor i at time t, then
the model (1) can be reduced to the well-known autoregressive-
moving average with exogenous input model with time-varying
coefficients.

III. DISTRIBUTED FFLS ALGORITHM

Tracking a time-varying signal is a fundamental problem in
system identification and signal processing. The well-known
RLS estimator with a constant forgetting factor α ∈ (0, 1) is
often used to track time-varying parameters, which is defined
by

θ̂t+1,i � argmin
β

t∑
k=0

αt−k(yk+1,i − βTϕk,i)
2. (3)

With some simple manipulations using the matrix inversion
formula, we can obtain the following recursive FFLS algorithm
(Algorithm 1) for an individual sensor.

However, due to the limited sensing ability of each sensor, it is
often the case where the measurements obtained by each sensor
can only reflect partial information of the unknown parameter.
In such a case, if only local measurements of the sensor itself are
utilized to perform the estimation task (see Algorithm 1), then at
most part of the unknown parameter rather than the whole vector
can be estimated. Thus, in this article, we aim at designing a
distributed adaptive estimation algorithm such that all sensors
cooperatively track the unknown time-varying parameter θt by
using random regression vectors and the observation signals
from its neighbors. To simplify the analysis, in this section,
we use a fixed undirected graph G = (V, E ,A) to model the
communication topology of n sensors.

We first introduce the following local cost function σt+1,i(β)
for each sensor i at the time instant t ≥ 0 recursively formulated
as a linear combination of its neighbors’ local estimation error
between the observation signal and the prediction signal

σt+1,i(β) =
∑
j∈Ni

aij

(
ασt,j(β) + (yt+1,j − βTϕt,j)

2

)
. (4)

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 27,2024 at 03:35:39 UTC from IEEE Xplore.  Restrictions apply. 



7482 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

with σ0,i(β) = 0. Set

σt(β) = col{σt,1(β), . . . , σt,n(β)}
et+1(β)=col{(yt+1,1 − βTϕt,1)

2,· · · , (yt+1,n − βTϕt,n)
2}.

Hence by (4), we have

σt+1(β) = αAσt(β) +Aet+1(β)

= α2A2σt−1(β) + αA2et(β) +Aet+1(β)

= · · ·

= αt+1At+1σ0(β) +

t∑
k=0

αt−kAt+1−kek+1(β)

=

t∑
k=0

αt−kAt+1−kek+1(β)

which implies that

σt+1,i(β) =

n∑
j=1

t∑
k=0

αt−ka
(t+1−k)
ij (yk+1,j − βTϕk,j)

2 (5)

where a(t+1−k)
ij is the ith row, the jth column entry of the matrix

At+1−k.
By minimizing the local cost function σt+1,i(β) in (5), we

obtain the distributed FFLS estimate θ̂t+1,i of the unknown time-
varying parameter for sensor i, i.e.,

θ̂t+1,i � argmin
β

σt+1,i(β)

=

⎡⎣ n∑
j=1

t∑
k=0

αt−ka
(t+1−k)
ij ϕk,jϕ

T
k,j

⎤⎦−1

⎛⎝ n∑
j=1

t∑
k=0

αt−ka
(t+1−k)
ij ϕk,jyk+1,j

⎞⎠ . (6)

Denote P t+1,i = (
∑n

j=1

∑t
k=0 α

t−ka
(t+1−k)
ij ϕk,jϕ

T
k,j)

−1.
Then, we write it into the following recursive form:

P−1
t+1,i =

∑
j∈Ni

aij(αP
−1
t,j +ϕt,jϕ

T
t,j). (7)

By (6), we similarly have

θ̂t+1,i = P t+1,i

∑
j∈Ni

aij(αP
−1
t,j θ̂t,j +ϕt,jyt+1,j). (8)

Note that in the above derivation, we assume that the ma-
trix

∑n
j=1

∑t
k=0 α

t−ka
(t+1−k)
ij ϕk,jϕ

T
k,j is invertible which is

usually not satisfied for small t. To solve this problem, we take
the initial matrix P 0,i to be positive definite. Then, (7) can be
modified into the following equation:

P t+1,i =

(
n∑

j=1

t∑
k=0

αt−ka
(t+1−k)
ij ϕk,jϕ

T
k,j

+

n∑
j=1

αt+1a
(t+1)
ij P−1

0,j

)−1

. (9)

This modification can make the matrix P t+1,i invertible for
all t ≥ 0, but it will not affect the asymptotic analysis and results
of the algorithm since (9) has the same recursive form as (7).

To design the distributed algorithm, we denote

P̄−1
t+1,i = αP−1

t,i +ϕt,iϕ
T
t,i. (10)

By Lemma 2.1, we have P̄ t+1,i =
1
α (P t,i − P t,iϕt,iϕ

T
t,iP t,i

α+ϕT
t,iP t,iϕt,i

).

Hence,

θ̄t+1,i � P̄ t+1,i(αP
−1
t,i θ̂t,i +ϕt,iyt+1,i)

= θ̂t,i +
P t,iϕt,i

α+ϕT
t,iP t,iϕt,i

(yt+1,i −ϕT
t,iθ̂t,i).

Therefore, we get the following distributed FFLS algorithm of
diffusion type, i.e., Algorithm 2.

Note that when A = In, the distributed FFLS algorithm will
degenerate to the classical FFLS (i.e., Algorithm 1), and when
α = 1, the distributed FFLS algorithm will degenerate to the
distributed LS in [22] which is used to estimate the time-invariant
parameter. The quantity 1− α is usually referred to as the speed
of adaption. Intuitively, when the parameter process {θt} is
slowly time-varying, the adaptation speed should also be slow
(i.e., α is large). The purpose of this article is to establish
the stability of the above diffusion FFLS-based adaptive filter
without independence or stationarity assumptions on random
regression vector {ϕt,i}.

Algorithm 2: Distributed FFLS Algorithm.

Input: {ϕt,i, yt+1,i}ni=1, t = 0, 1, 2, · · ·
Output: {θ̂t+1,i}ni=1, t = 0, 1, 2, · · ·

Initialization: For each sensor i ∈ {1, . . . , n}, begin
with an any initial vector θ̂0,i and an any initial
positive-definite matrix P 0,i > 0.
for each time t = 0, 1, 2, · · · do

for each sensor i = 1, . . . , n do
Step 1. Adaption (generate θ̄t+1,i and P̄ t+1,i based
on θ̂t,i, P t,i, ϕt,i and yt+1,i):

θ̄t+1,i = θ̂t,i +
P t,iϕt,i

α+ϕT
t,iP t,iϕt,i

(yt+1,i −ϕT
t,iθ̂t,i),

(11)

P̄ t+1,i =
1

α

(
P t,i −

P t,iϕt,iϕ
T
t,iP t,i

α+ϕT
t,iP t,iϕt,i

)
, (12)

Step 2. Combination (generate P−1
t+1,i and θ̂t+1,i

by a convex combination of θ̄t+1,j and P̄ t+1,j):

P−1
t+1,i =

∑
j∈Ni

aijP̄
−1
t+1,j , (13)

θ̂t+1,i = P t+1,i

∑
j∈Ni

aijP̄
−1
t+1,j θ̄t+1,j . (14)
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In order to analyze the distributed FFLS algorithm, we need
to derive the estimation error equation. Denote θ̃t,i � θt − θ̂t,i,
then from (13) and (14), we have

θ̃t+1,i = θt+1 − P t+1,i

∑
j∈Ni

aijP̄
−1
t+1,j θ̄t+1,j

= P t+1,i

∑
j∈Ni

aijP̄
−1
t+1,jθt+1 − P t+1,i

∑
j∈Ni

aijP̄
−1
t+1,j θ̄t+1,j

= P t+1,i

∑
j∈Ni

aijP̄
−1
t+1,j(θt+1 − θ̄t+1,j). (15)

By (1), (2), (11), and (12), we can obtain the following equation:

θt+1 − θ̄t+1,i

= θt +Δθt − θ̂t,i − P t,iϕt,i

α+ϕT
t,iP t,iϕt,i

(yt+1,i −ϕT
t,iθ̂t,i)

=

(
Im − P t,iϕt,iϕ

T
t,i

α+ϕT
t,iP t,iϕt,i

)
θ̃t,i− P t,iϕt,iwt+1,i

α+ϕT
t,iP t,iϕt,i

+Δθt

= αP̄ t+1,iP
−1
t,i θ̃t,i − P t,iϕt,iwt+1,i

α+ϕT
t,iP t,iϕt,i

+Δθt. (16)

For convenience of analysis, we introduce the following set of
notations:

Y t = col{yt,1, . . . , yt,n}, (n× 1)

Φt = diag{ϕt,1, . . . ,ϕt,n}, (mn× n)

W t = col{wt,1, . . . , wt,n}, (n× 1)

P t = diag{P t,1, . . . ,P t,n}, (mn×mn)

P̄ t = diag{P̄ t,1, . . . , P̄ t,n}, (mn×mn)

Θt = col{θt, . . . ,θt︸ ︷︷ ︸
n

}, (mn× 1)

ΔΘt = col{Δθt, . . . ,Δθt︸ ︷︷ ︸
n

}, (mn× 1)

Lt = diag{Lt,1, . . . ,Lt,n}, (mn× n)

whereLt,i =
P t,iϕt,i

α+ϕT
t,iP t,iϕt,i

,

Θ̃t = col{θ̃t,1, . . . , θ̃t,n}, (mn× 1)

A = A⊗ Im. (mn×mn).

Hence, by (15) and (16), we have the following equation about
estimation error:

Θ̃t+1

= αP t+1A P−1
t Θ̃t − P t+1A P̄−1

t+1(LtW t+1 +ΔΘt).
(17)

From (17), we see that the properties of product of random
matrices, i.e.,

∏
t αP t+1A P−1

t , play important roles in the
stability analysis of the homogeneous part in the error equation.

As we all know, the analysis of the product of random
matrices is generally a difficult mathematical problem if the

random matrices do not satisfy the independence or station-
arity assumptions. There is some work to study this problem,
which focuses on either symmetric random matrix or scalar
gain case. For example, the authors in [16] and[21] investigated
the convergence of consensus-diffusion SG algorithm and the
stability of the consensus normalized LMS algorithm, where
the random matrices in error equations are symmetric. Note
that the random matrices αP t+1A P−1

t here are asymmetric.
Although the authors in [23] studied the properties of the
asymmetric random matrices in the LMS-based estimation error
equation, the adaptive gain of distributed LMS algorithm in [23]
is a scalar while the gain P t,i

α+ϕT
t,iP t,iϕt,i

in (11) of this article is

a random matrix. Hence the methods used in existing literature
including [16], [21], and [23] are no longer applicable to our
case. One of the main purposes of this article is to overcome
the above difficulties by using both the specific structure of the
diffusion FFLS and some results of FFLS on the single sensor
case (see [33]).

IV. STABILITY OF DISTRIBUTED FFLS ALGORITHM UNDER

FIXED UNDIRECTED GRAPH

In this section, we will establish exponential stability for the
homogeneous part of the error equation (17) and the tracking
error bounds for the proposed distributed FFLS algorithm in
Algorithm 2 without requiring statistical independence on the
system signals. For this purpose, we need to introduce some
definitions on the stability of random matrices (see [33]) and
assumptions on the graph and random regression vectors.

A. Some Definitions

Definition 4.1: A random matrix sequence {At, t ≥ 0} de-
fined on the basic probability space (Ω,F , P ) is called Lp-
stable (p > 0) if supt≥0 E(‖At‖p) < ∞, where E(·) denotes
the mathematical expectation operator. We define ‖At‖Lp

�
[E(‖At‖p)]

1
p as the Lp-norm of the random matrix At.

Definition 4.2: A sequence of n× n random matrices A =
{At, t ≥ 0} is called Lp-exponentially stable (p ≥ 0) with pa-
rameter λ ∈ [0, 1), if it belongs to the following set:

Sp(λ) =

⎧⎨⎩A :
∥∥∥ t∏

j=k+1

Aj

∥∥∥
Lp

≤ Mλt−k∀t ≥ k,

∀k ≥ 0, for someM > 0

⎫⎬⎭ . (18)

As demonstrated by Guo in [33], {At, t ≥ 0} ∈ Sp(λ) is in
some sense the necessary and sufficient condition for stability of
{xt} generated by xt = Atxt + ξt+1, t ≥ 0. Also, the stability
analysis of the matrix sequence may be reduced to that of a
certain class of scalar sequence, which can be further analyzed
based on some excitation conditions on the regressors. To this
end, we introduce the following subset of S1(λ) for a scalar
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sequence a = (at, t ≥ 0):

S0(λ) =

⎧⎨⎩a : at ∈ [0, 1),E

⎛⎝ t∏
j=k+1

aj

⎞⎠ ≤ Mλt−k∀t ≥ k

∀k ≥ 0, forsomeM > 0

⎫⎬⎭ .

The definition S0(λ) will be used when we convert the product
of a random matrix to that of a scalar sequence.

Remark 4.1: It is clear that if there exists a constant a0 ∈
(0, 1) such that at ≤ a0 for all t, then at ∈ S0(a0). More prop-
erties about the set S0(λ) can be found in [34].

B. Assumptions

Assumption 4.1: The undirected graph G is connected.
Remark 4.2: For any k > 1, we denote Ak � (a

(k)
ij ) with A

being the weighted adjacency matrix of the graph G, i.e., a(k)ij is
the ith row, the jth column element of the matrix Ak (the kth
power of the matrix A). Under Assumption 4.1, it is clear that
Ak is a positive matrix for k ≥ DG , which means that a(k)ij > 0
for any i and j ([35]).

Assumption 4.2 (Cooperative Excitation Condition): For the
adapted sequences {ϕt,i,Ft, t ≥ 0}, where Ft is a sequence
of nondecreasing σ-algebras, there exists an integer h > 0 such
that {1− λt} ∈ S0(λ) for some λ ∈ (0, 1), where λt is defined
by

λt � λmin

⎡⎣E
⎛⎝ 1

n(1 + h)

n∑
i=1

(t+1)h∑
k=th+1

ϕk,iϕ
T
k,i

1 + ‖ϕk,i‖2
∣∣∣Fth

⎞⎠⎤⎦
with E(·|·) being the conditional mathematical expectation op-
erator.

Remark 4.3: Assumption 4.2 is also used to guarantee the
stability and performance of the distributed LMS algorithm
(see [16] and [23]). We give some intuitive explanations for
the above cooperative excitation condition about the following
two aspects.

1) “Why excitation:” Let us consider an extreme case where
all regression vectorsϕk,i are equal to zero, then Assumption 4.2
cannot be satisfied. Moreover, from (1), we see that the unknown
parameter θt cannot be estimated or tracked since the obser-
vations yt,i do not contain any information about the unknown
parameter θt. In order to estimate θt, some nonzero information
condition (named excitation condition) should be imposed on the
regression vectors ϕt,i. In fact, Assumption 4.2 intuitively gives
a lower bound (which may be changed over time) of the sequence
{λt}. For the φ-mixing and bounded regressor sequence {ϕt,i}
([16]), Assumption 4.2 can be equivalently written as a cleaner
cooperative excitation condition

inf
t

λmin

⎡⎣E
⎛⎝ n∑

i=1

(t+1)h∑
k=th+1

ϕk,iϕ
T
k,i

⎞⎠⎤⎦ > 0

which is actually a stochastic version of deterministic cooper-
ative conditions ([9]). Moreover, for the typical case where the
regressor sequence {ϕk,i} is i.i.d. and bounded with positive-
definite covariance matrix, Assumption 4.2 can be easily veri-
fied.

2) “Why cooperative:” Compared with the excitation condi-
tion for the FFLS algorithm of the single sensor case in [33],
i.e., there exists a constant h > 0 such that

{1− λ′
t, t ≥ 0} ∈ S0(λ′) (19)

for some λ′ where

λ′
t = λmin

⎡⎣E
⎛⎝ 1

1 + h

(t+1)h∑
k=th+1

ϕk,iϕ
T
k,i

1 + ‖ϕk,i‖2
∣∣∣Fth

⎞⎠⎤⎦ .

Assumption 4.2 contains not only temporal union information
but also spatial union information of all the sensors, which means
that Assumption 4.2 is much weaker than the condition (19) since
λt ≥ λ′

t when n > 1. Besides, we also note that Assumption
4.2 can be reduced to the condition (19) when n = 1. In fact,
Assumption 4.2 can reflect the cooperative effect of multiple
sensors in the sense that the estimation task can be still fulfilled
by the cooperation of multiple sensors even if any of them cannot
(see Example 6.1 in Section VI).

C. Main Results

In order to establish exponential stability of the product of
random matrices αP t+1A P−1

t , we first analyze the properties
of the random matrix P t to obtain its upper bound.

Lemma 4.1: For {P t} generated by (12) and (13), under
Assumptions 4.1–4.2, we have

Tt+1 ≤ 1

αh′ (1− βt+1)(h
′ −DG)tr(P th′+1) (20)

where

Tt �
th′∑

k=(t−1)h′+DG+1

tr(P k+1), T0 = 0

βt+1 � a2minγt+1

n(h′ −DG) (αh′+λmax (
∑n

l=1 P th′+1,l)) tr(P th′+1)

γt+1 � tr

⎛⎝( n∑
l=1

P th′+1,l

)2 (t+1)h′∑
k=th′+DG+1

n∑
j=1

ϕk,jϕ
T
k,j

(1 + ‖ϕk,j‖2)

⎞⎠
amin � min

i,j∈{1,...,n}
a
(DG)
ij > 0

h′ � 2h+DG

and h is given by Assumption 4.2.
Proof: Note that a(k)ij is the ith row, the jth column element

of the matrix Ak, k ≥ 1, where a
(1)
ij = aij . By (10), we have

P−1
k+1,i ≥

∑n
j=1 aijαP

−1
k,j . Hence, by the inequality⎛⎝ n∑

j=1

aijAj

⎞⎠−1

≤
n∑

j=1

aijA
−1
j (21)
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with Aj ≥ 0 [36], we obtain for any t ≥ 0, and any k ∈ [th′ +
DG + 1, (t+ 1)h′]

P k,i ≤
⎛⎝ n∑

j=1

aijαP
−1
k−1,j

⎞⎠−1

≤ 1

α

n∑
j=1

aijP k−1,j

≤ 1

α

n∑
j=1

aij

(
1

α

n∑
l=1

ajlP k−2,l

)
≤ · · ·

≤ 1

αk−th′−1

n∑
j=1

a
(k−th′−1)
ij P th′+1,j

≤ 1

αh′−1

n∑
j=1

a
(k−th′−1)
ij P th′+1,j . (22)

DenoteQk,th′
i =

∑n
j=1 a

(k−th′−1)
ij P th′+1,j . Then, by (10), (13),

(21), and (22), we have for k ∈ [th′ +DG + 1, (t+ 1)h′]

P k+1,i =

⎛⎝ n∑
j=1

aij(αP
−1
k,j +ϕk,jϕ

T
k,j)

⎞⎠−1

≤
n∑

j=1

aij(αP
−1
k,j +ϕk,jϕ

T
k,j)

−1

≤
n∑

j=1

aij

(
α

(
1

αh′−1
Qk,th′

j

)−1

+ϕk,jϕ
T
k,j

)−1

.

(23)

By Lemma 2.1 and (23), it follows that:

P k+1,i ≤ 1

αh′

n∑
j=1

aij

(
Qk,th′

j − Qk,th′
j ϕk,jϕ

T
k,jQ

k,th′
j

αh′ +ϕT
k,jQ

k,th′
j ϕk,j

)

=
1

αh′

n∑
j=1

a
(k−th′)
ij P th′+1,j

− 1

αh′

n∑
j=1

aij
Qk,th′

j ϕk,jϕ
T
k,jQ

k,th′
j

αh′ +ϕT
k,jQ

k,th′
j ϕk,j

≤ 1

αh′

n∑
j=1

a
(k−th′)
ij P th′+1,j−

1

αh′

n∑
j=1

aijQ
k,th′
j ϕk,jϕ

T
k,jQ

k,th′
j

αh′ + λmax(Q
k,th′
j )(1 + ‖ϕk,j‖2)

. (24)

Then, by (24), we have

tr(P k+1) = tr

(
n∑

i=1

P k+1,i

)

≤ 1

αh′ tr

(
n∑

i=1

n∑
j=1

a
(k−th′)
ij P th′+1,j

)

− 1

αh′ tr

(
n∑

i=1

n∑
j=1

aij
Qk,th′

j ϕk,jϕ
T
k,jQ

k,th′
j

αh′ + λmax(Q
k,th′
j )(1 + ‖ϕk,j‖2)

)

=
1

αh′

(
tr(P th′+1)−

n∑
j=1

tr
(
Qk,th′

j ϕk,jϕ
T
k,jQ

k,th′
j

)
αh′ + λmax(Q

k,th′
j )(1 + ‖ϕk,j‖2)

)
.

Hence, combining this with the inequality
∑n

j=1
aj

bj
≥

∑n
j=1 aj∑n
j=1 bj

,

where aj ≥ 0 and bj ≥ 0, we obtain that

tr(P k+1)

≤ 1

αh′

⎛⎜⎜⎝tr(P th′+1)−
tr

(∑n
j=1

(
Qk,th′

j

)2 ϕk,jϕ
T
k,j

(1+‖ϕk,j‖2)

)
∑n

j=1

(
αh′ + λmax

(
Qk,th′

j

))
⎞⎟⎟⎠ .

(25)

By Remark 4.2, we know that a(k)ij ≥ amin holds for all k ≥ DG .
Thus, by (25), we have for k ∈ [th′ +DG + 1, (t+ 1)h′]

tr(P k+1) ≤ 1

αh′

(
tr(P th′+1)

−
a2mintr

(∑n
j=1 (

∑n
l=1 P th′+1,l)

2 ϕk,jϕ
T
k,j

(1+‖ϕk,j‖2)
)

n (αh′ + λmax (
∑n

l=1 P th′+1,l))

)
. (26)

Summing up both sides of (26) from th′ +DG + 1 to (t+ 1)h′,
by the definition of βt+1, we have

Tt+1 =

(t+1)h′∑
k=th′+DG+1

tr(P k+1)

≤ 1

αh′ (1− βt+1)(h
′ −DG)tr(P th′+1).

This completes the proof of the lemma. �
Before giving the boundness of the random matrix P t, we

first introduce two lemmas in [33].
Lemma 4.2 ([33]): Let {1− ξt} ∈ S0(λ), and 0 < ξt ≤

ξ∗ < 1, where ξ∗ is a positive constant. Then, for any ε ∈ (0, 1),
{1− εξt} ∈ S0(λ(1−ξ∗)ε).

Lemma 4.3 ([33]): Let {xt,Ft} be an adapted
process, and xt+1 ≤ ξt+1xt + ηt+1, t ≥ 0,Ex2

0 < ∞,
where {ξt,Ft} and {ηt,Ft} are two adapted nonnegative
process with properties: ξt ≥ ε0 > 0∀t;E(η2t+1|Ft) ≤ N <

∞∀t; ‖∏t
k=j E(ξ

4
k+1|Fk)‖ ≤ Mηt−j+1∀t ≥ j∀j, where

ε0,M,N and η ∈ (0, 1) are constants. Then, we have

(i)

∥∥∥∥∥∥
t∏

k=j

ξk

∥∥∥∥∥∥
L2

≤ M
1
4 η

1
4 (t−j+1)∀t ≥ j∀j;

(ii) sup
t

E(‖xt‖) < ∞.

The following lemma proves the boundedness of the random
matrix sequence {P t}.

Lemma 4.4: For {P t} generated by (12) and (13), under
Assumptions 4.1–4.2, we have for any p ≥ 1, P t is Lp stable,
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i.e.,

sup
t≥0

E(‖P t‖p) < ∞

provided that λ
a2
min

32pmh(4h+DG−1) < α < 1, where λ andh are given
by Assumption 4.2, and m is the dimension of ϕt,i.

Proof: For any t ≥ 0, there exists an integer zt = � th′+DG
h �+

1 such that

(zt − 1)h ≤ (th′ +DG + 1) ≤ zth+ 1. (27)

By the definition of βt+1 in Lemma 4.1, it is clear that

βt+1

≥
a2mintr

(
(
∑n

l=1 P th′+1,l)
2∑(zt+1)h

k=zth+1

∑n
j=1

ϕk,jϕ
T
k,j

(1+‖ϕk,j‖2)
)

n(h′ −DG) (αh′ + λmax (
∑n

l=1 P th′+1,l)) tr(P th′+1)

� bt+1. (28)

Hence by Lemma 4.1 and (28), we obtain

Tt+1 ≤ 1

αh′ (1− bt+1)(h
′ −DG)tr(P th′+1). (29)

By the inequality P k,i ≤ 1
α

∑n
j=1 aijP k−1,j used in (22) it

follows that

(h′ −DG)tr(P th′+1) =

th′∑
k=(t−1)h′+DG+1

tr(P th′+1)

=

th′∑
k=(t−1)h′+DG+1

n∑
i=1

tr(P th′+1,i)

≤
th′∑

k=(t−1)h′+DG+1

n∑
i=1

tr

⎛⎝ 1

αth′−k

n∑
j=1

a
(th′−k)
ij P k+1,j

⎞⎠
≤ 1

αh′−DG−1

th′∑
k=(t−1)h′+DG+1

tr(P k+1) =
1

αh′−DG−1
Tt.

Hence, by (29), we have

Tt+1 ≤ 1

α2h′−DG−1
(1− bt+1)Tt. (30)

For p ≥ 1, denote

ct+1 =
1

αp(2h′−DG−1)

(
1− bt+1

2

)
I{tr(P th′+1)≥1} (31)

where I{·} denotes the indicator function, whose value is 1 if its
argument (a formula) is true, and 0, otherwise. Then, by (29)
and (30), we have

T p
t+1 ≤ T p

t+1

(
I{tr(P th′+1)≥1} + I{tr(P th′+1)≤1}

)
≤ 1

αp(2h′−DG−1)
(1− bzt+1)

pT p
t I{tr(P th′+1)≥1}

+ T p
t+1I{tr(P th′+1)≤1}

≤ ct+1T
p
t +

1

αph′ (h
′ −DG)p. (32)

Denote

Hzt = E

⎛⎝ (zt+1)h∑
k=zth+1

n∑
j=1

ϕk,jϕ
T
k,j

1 + ‖ϕk,j‖2
∣∣∣∣∣Fzth

⎞⎠ .

By the fact P th′+1,l ∈ Fth′ ⊂ Fzth and the inequality
tr((

∑n
l=1 P th′+1,l)

2) ≥ m−1(tr(
∑n

l=1 P th′+1,l))
2, from the

definition of bt+1 in (28), we can conclude the following in-
equality:

E(bt+1|Fzth)

=
a2mintr

[
(
∑n

l=1 P th′+1,l)
2
Hzt

]
n(h′ −DG) (αh′ + λmax (

∑n
l=1 P th′+1,l)) tr(P th′+1)

≥ a2min (tr(P th′+1))
2
λmin(Hzt)

mn(h′ −DG) (αh′ + λmax (
∑n

l=1 P th′+1,l)) tr(P th′+1)

≥ a2min (tr(P th′+1)) λzt(1 + h)

m(h′ −DG) (αh′ + λmax (
∑n

l=1 P th′+1,l))

≥ a2min (tr(P th′+1)) λzt(1 + h)

m(h′ −DG) (1 + tr(P th′+1))

≥ a2minλzt(1 + h)

2m(h′ −DG)
on{tr(P th′+1) ≥ 1}. (33)

Hence, by the definition of ct+1 in (31) and (33)

E(ct+1|Fzth)

=
1

αp(2h′−DG−1)

(
1− E(bt+1|Fzth)

2

)
I{tr(P th′+1)≥1}

≤ 1

αp(2h′−DG−1)

(
1− a2minλzt(1 + h)

4m(h′ −DG)

)
I{tr(P th′+1)≥1}.

(34)

Denote

dt+1 =

{
ct+1, tr(P th′+1) ≥ 1;

1

αp(2h′−DG−1)

(
1− a2

minλzt (1+h)

4m(h′−DG)

)
, otherwise.

Then, by (32) and (34), we have

T p
t+1 ≤ dt+1T

p
t +

1

αph′ (h
′ −DG)p. (35)

Since λzt ≤ h
1+h and bt+1 ≤ a2

minh

h′−DG
, we know that dt+1 ≥ ε0

with ε0 being a positive constant. Denote Bt � Fzth, then by
the definition of zt, it is clear that zt+1 ≥ zt + 2. Thus, we obtain
that dt+1 ∈ F(zt+1)h ⊂ Bt+1. Similar to the analysis of (34),
we have

E(c4t+1|Bt) ≤ 1

α4p(2h′−DG−1)

(
1− a2minλzt(1 + h)

4m(h′ −DG)

)
. (36)

Hence, by the definition of dt+1, it follows that∥∥∥ t∏
k=j

E(d4k+1|Bk)
∥∥∥
L1
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≤
∥∥∥ t∏

k=j

(
1

α4p(2h′−DG−1)

(
1− a2minλzk(1 + h)

8mh

))∥∥∥
L1

.

(37)

By Assumption 4.2 and the fact λzk ≤ h
1+h , applying

Lemma 4.2, we obtain {1− a2
minλzk

(1+h)

8mh } ∈ S0(λ
a2
min

8mh ). By
(37), we see that there exists a positive constant N such
that ∥∥∥ t∏

k=j

E(d4k+1|Bk)
∥∥∥
L1

≤ Nλ
t−j+1
1

where λ1 = 1

α4p(2h′−DG−1) λ
a2
min

8mh ∈ (0, 1). Furthermore, by

Lemma 4.3, we have supt E(T
p
t ) < ∞, which implies that

supt≥0 E(‖P t‖p) < ∞. This completes the proof. �
We then establish the exponential stability of the homoge-

neous part of the error equation (17).
Theorem 4.1: Consider the distributed FFLS algorithm in Al-

gorithm 2. If the forgetting factor α satisfies λ

a2
min

32pmh(4h+DG−1) <
α < 1 and for any i ∈ {1, . . . , n}, supt ‖ϕt,i‖L6p

< ∞, then
under Assumptions 4.1 and 4.2, for any p ≥ 1, {αP t+1A P−1

t }
is Lp-exponentially stable.

Proof: By (10) and (13), we have

P−1
t+1,i =

n∑
j=1

aij(αP
−1
t,j +ϕt,jϕ

T
t,j).

Then, we can obtain the following equation:

tr(P−1
t+1) = tr

(
n∑

i=1

P−1
t+1,i

)

= tr

⎛⎝ n∑
j=1

(αP−1
t,j +ϕt,jϕ

T
t,j)

⎞⎠
= αtr(P−1

t ) +

n∑
j=1

‖ϕt,j‖2.

By the Mikowski inequality, it follows that

‖tr(P−1
t+1)‖L3p

≤ α‖tr(P−1
t )‖L3p

+O

⎛⎝ n∑
j=1

‖ϕt,j‖2L6p

⎞⎠
= αt+1‖tr(P−1

0 )‖L3p
+O

(
t∑

k=0

αj

)
.

Hence, we have

sup
t

‖P−1
t+1‖L3p

< ∞. (38)

By Lemma 4.4, we derive that

∥∥∥ t∏
k=j

αP k+1A P−1
k

∥∥∥
Lp

=

⎡⎣E
⎛⎝∥∥∥ t∏

k=j

αP k+1A P−1
k

∥∥∥p
⎞⎠⎤⎦

1
p

=
[
E
(‖αt−j+1P t+1A

t−j+1P−1
j ‖p)] 1

p

≤ αt−j+1‖P t+1‖L2p
‖P−1

j ‖L2p
= O(αt−j+1).

This completes the proof of the theorem. �
Based on Theorem 4.1, we further establish the tracking error

bound of Algorithm 2 under some conditions on the noises and
parameter variation.

Theorem 4.2: Consider the model (1) and the error equation
(17). Under the conditions of Theorem 4.1, if for some p ≥ 1,
σ3p � supt(‖W t‖L3p

+ ‖ΔΘt‖L3p
) < ∞, then there exists a

constant c such that

lim sup
t→∞

‖Θ̃t‖Lp
≤ cσ3p.

Proof: For convenience of analysis, let the state transition
matrix Ψ(t, k) be recursively defined by

Ψ(t+ 1, k) = αP t+1A P−1
t Ψ(t, k),Ψ(k, k) = Imn. (39)

It is clear that Ψ(t+ 1, k) = αt−k+1P t+1A t−k+1P−1
k .

From the definition of Lt and (10), we have P̄−1
t+1Lt = Φt.

Then, by (17), we have

Θ̃t+1= αP t+1A P−1
t Θ̃t − P t+1A (ΦtW t+1+P̄−1

t+1ΔΘt).

Hence, by the Hölder inequality, we have

‖Θ̃t+1‖Lp
=
∥∥∥Ψ(t+ 1, 0)Θ̃0

−
t∑

k=0

Ψ(t+ 1, k + 1)(P k+1A (ΦkW k+1+P̄−1
k+1ΔΘk))

∥∥∥
Lp

≤ ‖αt+1P t+1A
t+1P−1

0 Θ̃0‖Lp

+
∥∥∥ t∑

k=0

αt−kP t+1A
t−k+1(ΦkW k+1 + P̄−1

k+1ΔΘk)
∥∥∥
Lp

≤ O(αt+1‖P t+1‖L2p
)

+

t∑
k=0

αt−k‖P t+1‖L3p
‖Φk‖L3p

‖W k+1‖L3p

+

t∑
k=0

αt−k‖P t+1‖L3p
‖P̄−1

k+1‖L3p
‖ΔΘk‖L3p

.

Hence, by Lemma 4.4 and (38), it follows that
lim supt→∞ ‖Θ̃t‖Lp

≤ cσ3p, where c is a positive constant
depending on α and the upper bounds of {P t}, {Φt}, and
{P−1

t }. This completes the proof. �
Remark 4.4: Following the proof line of Theorems 4.1

and 4.2, we can see that if the forgetting factor α is se-
lected to be uncoordinated for different sensors, i.e., we re-
place α with αi in Algorithm 2, the key inequalities (22) and
(23) still hold by replacing α with αmin � min{α1, . . ., αn}.
Based on this, the results of Theorems 4.1 and 4.2 also hold

only if the condition λ

a2
min

32pmh(4h+DG−1) < α is replaced with

λ

a2
min

32pmh(4h+DG−1) < αmin.
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V. STABILITY OF DISTRIBUTED FFLS ALGORITHM OVER

UNRELIABLE DIRECTED NETWORKS

In Section IV, we have studied the stability of the distributed
FFLS algorithm under the fixed undirected graph. However,
in practical engineering applications, the information exchange
between sensors might not be bidirectional. Moreover, it is often
interfered by many uncertain random factors due to the distance,
obstacle, and interference, which will lead to the interruption or
reconstruction of communication links. Thus, in this section,
we model the communication links between sensors as time-
varying random switching directed communication topologies
Gr(t) = (V, Er(t),Ar(t)). The switching process is governed by
a homogeneous Markov chain r(t) whose states belong to a
finite set S = {1, 2, . . ., s}, and the corresponding set of com-
munication topology graph is denoted by C = {G1, . . .,Gs}. The
communication graph is switched just at the instant that the
value of r(t) is changed. Thus, the corresponding adjacency
matrix and the neighbor set of the sensor i are denoted as
Ar(t) = [aij,r(t)]1≤i,j≤n and Ni,r(t), respectively. For the dis-
tributed FFLS algorithm over the Markovian switching directed
topologies, we just modify Step 2 in Algorithm 2 as follows:

P−1
t+1,i =

∑
j∈Ni,r(t)

aji,r(t)P̄
−1
t+1,j , (40)

θ̂t+1,i = P t+1,i

∑
j∈Ni,r(t)

aji,r(t)P̄
−1
t+1,j θ̄t+1,j . (41)

To analyze the stability of algorithm (11), (12), (40), and (41),
we introduce the following assumptions.

Assumption 5.1: All possible digraphs {G1, . . .,Gs} are bal-
anced and the union of all those digraphs, i.e, ∪s

j=1Gj =

(V,∪s
j=1Ej , 1

s

∑s
j=1 Aj) is strongly connected.

Assumption 5.2: The Markov chain {r(t), t ≥ 0} is irre-
ducible and aperiodic with the transition probability matrix
P = [pij ]1≤i,j≤s where pij = Pr(r(t+ 1) = j|r(t) = i) with
Pr(·|·) being the conditional probability.

According to the Markov chain theory [37], a discrete-time
homogeneous Markov chain with finite states is ergodic if and
only if it is irreducible and aperiodic. Hence, Assumption 5.2
means that the l-step transition matrix P l has a limit with
identical rows.

In the following, we will analyze the properties of the strongly
connected directed graph. For convenience, we denote the ith
row, the jth column element of the matrix A as A(i, j).

Lemma 5.1: Let Gk = (V, Ek,Ak), (1 ≤ k ≤ n) be n
strongly connected graph with V = {1, 2, . . . , n}. Then,
A1A2 · · · An is a positive matrix, i.e., every element of the
matrix A1A2 · · · An is positive.

Proof: We just prove that the graph Gn
1 corresponding to the

matrix A1A2 · · · An is a complete graph. Denote the child node
set of the node i in graph Gk as Ok(i). The corresponding child
node set of the node i in graph Gn

1 is denoted by On
1 (i). For any

i ∈ V and j ∈ O1(i), we have

(A1A2)(i, j) =

n∑
k=1

A1(i, k)A2(k, j)

≥ A1(i, j)A2(j, j) > 0. (42)

SinceG2 is strongly connected, ifO1(i) �= V , then there exists
two nodes j1 ∈ V\O1(i) and j2 ∈ O1(i) such that (j2, j1) ∈ E2,
hence

(A1A2)(i, j1) =

n∑
k=1

A1(i, k)A2(k, j1)

≥ A1(i, j2)A2(j2, j1) > 0. (43)

By (42) and (43), it is clear that {j1} ∪ O1(i) ⊂ O2
1(i). Hence,

for any j ∈ {j1} ∪ O1(i), we have

(A1A2A3)(i, j) =
n∑

k=1

(A1A2)(i, k)A3(k, j)

≥ (A1A2)(i, j)A3(j, j) > 0. (44)

Since G3 is strongly connected, if {j1} ∪ O1(i) �= V , then
there exists two nodes j2 ∈ V\({j1} ∪ O1(i)) and j3 ∈ {j1} ∪
O1(i) such that (j3, j2) ∈ E3, hence

(A1A2A3)(i, j2) =
n∑

k=1

(A1A2)(i, k)A3(k, j2)

≥ (A1A2)(i, j3)A3(j3, j2) > 0. (45)

By (44) and (45), we can see that {j2} ∪ {j1} ∪ O1(i) ⊂ O3
1(i).

We repeat the above process until On
1 (i) = V . The lemma can

be proved by the arbitrariness of the node �
Compared with the undirected graph case, the key difference

is that the adjacency matrix in this section is an asymmetric
and random matrix. Hence we need to deal with the effect of
asymmetric random adjacency matrices. Here we assume the
Markov chain {r(t), t ≥ 0} is independent of Ft. By using the
above lemma and Markov chain theory, we establish the stability
of the algorithm (11), (12), (40), (41) under Markovian switching
topology.

Theorem 5.1: Under Assumptions 4.2, 5.1, and 5.2,
if for any i ∈ {1, . . . , n}, supt ‖ϕt,i‖L6p

< ∞ and σ3p �
supt(‖W t‖L3p

+ ‖ΔΘt‖L3p
) < ∞ hold, then there exists a

constant c′ such that

lim sup
t→∞

‖Θ̃t‖Lp
≤ c′σ3p.

Proof: Following the proof line of Theorem 4.2 in Section
IV-C, it can be seen that we need to prove equation (33) holds
under the assumptions of the theorem. By Assumption 5.2, there
exists a positive integer q0 such that

Pr(r(t+ q0) = a|r(t) = b) > 0 (46)

holds for all t and all states a, b ∈ S. Denote Πt
k =

Ar(t)Ar(t−1) · · ·Ar(k). Then the i-th row, j-th column element
of the matrix Πt

k is denoted by Πt
k(i, j). Following Lemmas

4.1 and 4.4, we may abuse some notations h′ = 2h+ nsq0,
zt = � th′+nsq0

h �+ 1 and

bt+1 =

tr

(
(zt+1)h∑
k=zth+1

n∑
j=1

(
n∑

l=1

Πk−1
th′+1(j, l)P th′+1,l

)2
ϕk,jϕ

T
k,j

1+‖ϕk,j‖2

)

n(h′ − nsq0)

(
αh′ + λmax

(
n∑

l=1

P th′+1,l

))
tr(P th′+1)

.
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In the following we analyze the term E(bt+1|F̄zth). By (46),
we can see that there exists a positive constant p0 such that for
all t,

Pr (r(t+ nsq0) = s, r(t+ (ns− 1)q0) = s− 1, . . . ,

r(t+ ((n− 1)s+ 1)q0) = 1;

· · · r(t+ 2sq0) = s, r(t+ (2s− 1)q0) = s− 1, . . . ,

r(t+ (s+ 1)q0) = 1;

r(t+ sq0) = s, r(t+ (s− 1)q0) = s− 1 · · · ,

r(t+ q0) = 1
∣∣∣r(t))

= Pr
(
r(t+ nsq0) = s

∣∣∣r(t+ (ns− 1)q0) = s− 1
)
· · ·

Pr
(
r(t+ ((n− 1)s+ 1)q0) = 1

∣∣∣r(t+ ((n− 1)s)q0) = s
)

· · ·Pr (r(t+ q0) = 1|r(t)) ≥ p0 > 0. (47)

By (47), we know that the Markov chain {r(t), t ≥ 0} can
visit all states in S with n times in a positive probability dur-
ing the time interval [t+ q0, t+ nsq0]. Hence for k ∈ [zth+
1, (zt + 1)h)], by Assumption 5.1 and Lemma 5.1, there exists a
positive constant σ > 0 such that the following inequality holds
for all j, l ∈ {1, . . ., n},

E

(
Πk−1

th′+1(j, l)
∣∣∣F̄k

)
= E

(
Πk−1

th′+1(j, l)
∣∣∣r(th′)

)
≥ σ0E

(
Πk−1

th′+q0
(j, l)

∣∣∣r(th′)
)
≥ σ, a.s.

where F̄k is a σ-algebra generated by Fk and {r(1), . . .,
r(th′)}. Then by the convexity of the matrix in [38] we have

E

⎛⎝( n∑
l=1

Πk−1
th′+1(j, l)P th′+1,l

)2 ∣∣∣∣∣F̄k

⎞⎠
≥

(
E

(
n∑

l=1

Πk−1
th′+1(j, l)P th′+1,l

)∣∣∣∣∣F̄k

)2

=

(
n∑

l=1

E

(
Πk−1

th′+1(j, l)

∣∣∣∣∣F̄k

)
P th′+1,l

)2

≥ σ2

(
n∑

l=1

P th′+1,l

)2

.

By Fzth ⊂ Fk and ϕk,j ∈ Fk, we conclude that

E

⎛⎝( n∑
l=1

Πk−1
th′+1(j, l)P th′+1,l

)2
ϕk,jϕ

T
k,j

1 + ‖ϕk,j‖2
∣∣∣∣∣F̄zth

⎞⎠
= E

((
E

(
n∑

l=1

Πk−1
th′+1(j, l)P th′+1,l

)2 ∣∣∣∣∣F̄k

)

· ϕk,jϕ
T
k,j

1 + ‖ϕk,j‖2
∣∣∣∣∣F̄zth

)

≥ σ2
E

((
n∑

l=1

P th′+1,l

)2
ϕk,jϕ

T
k,j

1 + ‖ϕk,j‖2
∣∣∣∣∣F̄zth

)
, (48)

where F̄zth is a σ-algebra generated by Fzth and {r(1), . . .,
r(th′)}. From the above analysis, we can obtain the following
inequality

E(bt+1|F̄zth) ≥
(zt+1)h∑
k=zth+1

n∑
j=1

σ2tr

(
E

((
n∑

l=1

P th′+1,l

)2
ϕk,jϕ

T
k,j

1+‖ϕk,j‖2
∣∣∣F̄zth

))

n(h′ − nsq0)

(
αh′ + λmax

(
n∑

l=1

P th′+1,l

))
tr(P th′+1)

=
σ2tr

[
(
∑n

l=1 P th′+1,l)
2
Hzt

]
n(h′ − nsq0) (αh′ + λmax (

∑n
l=1 P th′+1,l)) tr(P th′+1)

≥
σ2λmin(Hzt)tr

[
(
∑n

l=1 P th′+1,l)
2
]

n(h′ − nsq0) (αh′ + λmax (
∑n

l=1 P th′+1,l)) tr(P th′+1)
.

Then by the above inequality and tr((
∑n

l=1 P th′+1,l)
2) ≥

m−1(tr(
∑n

l=1 P th′+1,l))
2 = m−1(tr(P th′+1))

2, we have

E(bt+1|F̄zth)

≥ σ2λmin(Hzt)tr(P th′+1)

mn(h′ − nsq0) (αh′ + λmax (
∑n

l=1 P th′+1,l))

≥ σ2(1 + h)λzttr(P th′+1)

m(h′ − nsq0) (αh′ + λmax (
∑n

l=1 P th′+1,l))

≥ σ2(1 + h)λzttr(P th′+1)

m(h′ − nsq0) (1 + tr (P th′+1))

≥ σ2(1 + h)λzt

2m(h′ − nsq0)
on{tr(P th′+1) ≥ 1}.

Hence by following the rest part proof of Lemma 4.4
and replacing the notation DG with nsq0, we can obtain
supt≥0 E(‖P t‖p) < ∞. Furthermore, by Assumption 5.1, we
know that equation (38) still hold, which yields the exponen-
tial stability of the homogeneous part of the error equation.
Then by following the proof of Theorem 4.2, we can obtain
lim supt→∞ ‖Θ̃t‖Lp

≤ c′σ3p, which completes the proof of
Theorem 5.1. �

Remark 5.1: From Theorem 5.1, (also Theorems 4.1 and 4.2),
we see that our results are obtained without using the indepen-
dence or stationarity assumptions on the regression signals by
virtue of some powerful techniques including stochastic stability
theory, Markov chain theory and some matrix inequalities. Thus,
it is possible to apply the distributed FFLS algorithm to practical
feedback systems.

VI. SIMULATION RESULTS

In this section, we provide two examples to illustrate the
theoretical results where the regression signals do not satisfy
the i.i.d. condition.

Example 6.1: Let us consider a network composed of n = 5
sensors whose dynamics obey the model (1) with the dimension
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Fig. 1. Tracking errors of noncooperative FFLS algorithm and dis-
tributed FFLS algorithm under the undirected graph.

Fig. 2. Tracking errors of several distributed algorithms under the undi-
rected graph.

m = 4. The noise sequence {wt,i, t ≥ 1, i = 1, . . ., 5} in (1) is
independent and identically distributed with wt,i ∼ N (0, 0.1)
(Gaussian distribution with zero mean and variance 0.1). Let
the regression vectors ϕt,i be generated by the following state
space model:

xt,i = Aixt−1,i +Biεt,i

ϕt,i = Cixt,i (49)

where xt,i ∈ R
4 is the state with the initial value

x0,i = [1, 1, 1, 1]T , Ai = diag{1/2, 3/4, 4/5, 2/3}, (i =
1, . . . , 5), B1 = B5 = [1, 0, 0, 0]T , B2 = [0, 1, 0, 0]T , B3 =
[0, 0, 1, 0]T , B4 = [0, 0, 0, 1]T , C1 = C5 = diag{1, 0, 0, 0},
C2 = diag{0, 1, 0, 0}, C3 = diag{0, 0, 1, 0}, and C4 =
diag{0, 0, 0, 1}. The noise sequence {εt,i, t ≥ 1, i = 1, . . . , n}
in (49) is independent and identically distributed with
εt,i ∼ N (0, 1.2). It is clear that the regression vectors ϕt,i

generated by (49) are non-i.i.d..
Assume that the unknown time-varying parameter θt satisfies

θt = θt−1 + γvt, with each element of vt ∼ N (0, 1). Here, we
set γ = 0.08. The adjacency matrix of the undirected network

(a) (b)

(d)

(c)

Fig. 3. (a)–(c) are the topology of G1, G2, and G3, respectively. (d) is
the topology of the union graph. The union graph of these three graphs
is strongly connected while non of them is.

Fig. 4. Tracking errors of noncooperative FFLS algorithm and dis-
tributed FFLS algorithm under Markovian switching directed graphs.

Fig. 5. Tracking errors of several distributed algorithms under Marko-
vian switching directed graphs.

is taken as

A =

⎛⎜⎜⎜⎜⎝
3
4 0 1

4 0 0
0 1

4
1
12

1
3

1
3

1
4

1
12

1
6

1
4

1
4

0 1
3

1
4

1
12

1
3

0 1
3

1
4

1
3

1
12

⎞⎟⎟⎟⎟⎠ .
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By the definition of adjacency matrix, it is easy to see that the
corresponding undirected graph is connected. For the system
settings, we can verify that for each sensor i (i = 1 · · · , 5), the
regression signals ϕt,i [generated by (49)] cannot satisfy the
excitation condition (19) for any single sensors, but they can
cooperatively satisfy Assumption 4.2 with h = 1. We repeat the
simulations for s = 200 times with the same initial states.

1) We estimate the unknown parameter θt by using the
standard noncooperative FFLS algorithm (i.e., Algorithm 1) and
distributed FFLS algorithm (i.e., Algorithm 2) with forgetting
factor α = 0.9. Fig. 1 shows tracking errors by the noncoopera-
tive FFLS algorithm and the distributed FFLS algorithm for the
time-varying unknown parameter. From Fig. 1, we can see that if
we use the standard noncooperative FFLS algorithm to estimate
θt, the tracking errors of all five sensors are large because all
the sensors do not satisfy the information condition (19), while
the tracking errors of all five sensors in the distributed FFLS
algorithm lie in a small neighborhood of 0 since all sensors
cooperatively satisfy Assumption 4.2, which can reveal the
cooperative effect of sensors in a sense that the estimation or
tracking task can be fulfilled through exchanging information
between sensors even though any individual sensor cannot.

2) We compare our algorithm (Algorithm 2) with three
types of distributed LMS algorithms in [16] and [23]
[i.e., distributed normalized LMS, combination then adaption
(CTA) type distributed LMS, and adaption then combination
(ATC) type distributed LMS]. We conduct the simulations by
using the same regressors and initial states as above. The average
tracking errors on the whole network of different distributed
algorithms are shown in Fig. 2, from which we see that the
distributed FFLS algorithm proposed in this article has better
tracking performance than the three types of distributed LMS
algorithms.

We next construct another simulation example to demonstrate
the performance of the distributed FFLS algorithm under Marko-
vian switching directed graphs.

Example 6.2: Take the same system settings including initial
states and regression vectors as those in Example 6.1. The
directed graphs Gr(t) = (V, Er(t),Ar(t)) with rt ∈ {1, 2, 3} are
depicted in Fig. 3 . The transition probability matrix of the

Markov chain rt is chosen to be P =

( 1
5

3
10

1
2

1
2

1
10

2
5

3
5

1
5

1
5

)
. It is clear

that Assumptions 5.1 and 5.2 are satisfied. Then, we get the
tracking errors by using the noncooperative FFLS algorithm and
the distributed FFLS algorithm under the Markovian switching
directed graphs, see Fig. 4 . Moreover, Fig. 5 compares the
tracking performance of the distributed FFLS algorithm with
distributed LMS algorithms under the Markovian switching
directed graphs. By Figs. 4 and 5, we can obtain similar results
as those in Example 6.1.

VII. CONCLUSION

This article proposed a distributed FFLS algorithm to collab-
oratively track an unknown time-varying parameter by minimiz-
ing a local loss function with a forgetting factor. By introducing a
spatio-temporal cooperative excitation condition, we established

the stability of the proposed distributed FFLS algorithm for
fixed undirected graph case. Then, the theoretical results were
generalized to the case of Markovian switching directed graphs.
The cooperative excitation condition revealed that the sensors
can collaboratively accomplish the tracking task even though
any individual sensor cannot. Simulation results showed that
the distributed FFLS algorithm has better tracking performance
than the well-investigated distributed LMS algorithms. We note
that our theoretical results are established without using indepen-
dence or stationarity conditions of the regression vectors. Thus, a
relevant research topic is how to combine the distributed adaptive
estimation with the distributed control. How to establish the
stability analysis of the distributed algorithms for more complex
cases, such as considering quantization effect or time-delay in
communication channels is another interesting research topic.
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