于宁波

2020年03月30日 20:40  点击:[]

基本信息

姓名:于宁波61BC1

性别:

所属部门:机器人与信息自动化研究所

行政职务:

职称:教授

学历:博士

所学专业:智能机器人

办公电话:

电子邮件:nyu@nankai.edu.cn

研究方向:医疗康复机器人,医疗人工智能

个人简介

教育和工作经历
  • “可信行为智能算法与系统”教育部工程研究中心副主任

  • 教育部首批中央高校优秀青年团队牵头人(任务:“脑肢融合、人在回路”的智能康复机器人)

  • 入选南开大学“青年学科带头人培养计划”

  • 2019.12-至今, 南开大学,人工智能学院, 教授,博士生导师

  • 2012.07-2019.12, 南开大学, 人工智能学院, 副教授,硕士生导师

  • 2010.11-2012.06, 瑞士苏黎世联邦理工学院(ETH Zurich), 生物力学研究所, 博士后

  • 2005.09-2010.10, 瑞士苏黎世联邦理工学院(ETH Zurich), 感知-运动系统实验室, 博士

    (期间:在苏黎世神经科学中心辅修神经科学博士课程)

  • 2003.09-2005.08, 香港科技大学, 电机与电子工程系, 硕士

  • 1999.09-2003.06, 天津大学, 精密仪器与光电子工程学院, 学士


课题组介绍

本课题组立足机器人、控制和人工智能,研究医疗康复机器人技术与系统、人机智能交互与协作、医疗人工智能,为医生、患者、残疾人和年长者提供筛查诊断、治疗康复、以及生活辅助的工具。

近年来得到国家重点研发计划,国家自然科学基金重点、国际合作重点、面上和青年项目,天津市和南开大学建设经费等的立项支持,本课题组基于功能近红外fNIRS、脑电EEG、肌电EMG等神经和生理信息采集设备,运动捕捉、足底压力采集、力反馈等人体运动测量和交互设备,以及多种自研系统,密切与临床团队合作,建立了人机灵巧力触觉交互、机器人辅助康复训练、脑和肢体功能障碍的筛查-诊断-治疗-康复等多个研究平台,开展脑神经疾病临床研究6项。


(1) 构建fNIRS-EEG-EMG同步采集系统与多模态信息智能融合分析技术,应用于脑卒中(左)、帕金森(中)、右(意识障碍)患者的脑-肢功能与障碍评估、治疗优化、机制研究29603


(2) 功能神经调控的闭环优化(经颅磁刺激TMS,脑深部电刺激DBS,脊髓电刺激SCS等)及其与机器人辅助行为康复的脑肢融合干预

1A8D8


(3) 面向多地形多场景的步态与平衡康复机器人、刚柔耦合驱动的手功能康复机器人、双侧上肢协调康复机器人等硬件平台和软件系统,以及机器人自主行为、人机交互控制方法

1494A


热烈欢迎加入本团队开展博士后研究、攻读博士和硕士研究生、进行科研实习和创新!

我们的研究面向世界科技前沿、面向国家重大需求、面向人民生命健康,我们有充足的项目和经费支撑,有先进的仪器设备平台,有密切的医工合作、国内外合作,这将为你的科研梦想插上飞翔的翅膀!


欢迎前来交流、合作:南开大学津南校区,人工智能学院北楼504、502,南楼101。

科研项目、成果、获奖、专利

主持国家级科研项目  
  • 国家自然科学基金重点项目:脑肢协同多模态干预的脑卒中专科型手部康复机器人 (U1913208),主持,255万.

  • 国家重点研发计划“智能机器人”重点专项课题:基于骨愈合机理的主被动融合量化康复 (2018YFB1307803),主持,240万.

  • 国家自然科学基金面上项目:面向偏瘫患者步行康复训练的柔索机器人动态规划与控制方法研究 (61873135),主持,65万.

  • 国家自然科学基金国际合作重点项目:康复机器人主动自适应控制策略与在线评价方法研究与应用 (61720106012),主持课题,88万/260万.

  • 国家自然科学基金青年项目:基于fMRI脑功能成像的机器人辅助腕手神经康复训练与评价方法研究(61403215),主持,26万.

医工合作、国内外合作
  • 医工合作:天津市环湖医院,天津市人民医院,北京天坛医院,中国人民解放军总医院,中国康复研究中心,等

  • 国内外合作:瑞士ETH Zurich,香港科技大学,中国科学院自动化研究所,中国科学院沈阳自动化研究所,等

主要奖励

本课题组多次获得国内外奖励,研究生获得多项国家奖学金、优秀毕业生等奖励和荣誉,并在学生竞赛和创新项目中多次获奖:              

学术获奖:

  • 2023.12, 智疗-脑肢融合的帕金森病全周期智能诊疗辅助系统获国家卫健委第三届医学科技创新大赛二等奖

  • 2023.12Best Conference Paper Award, The 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

  • 2021.07Best Conference Paper Award Finalist, IEEE Int. Conf. CYBER Technology in Automation, Control, and Intelligent Systems

  • 2021.04,“人在环中的智能化康复训练方法”获中国人工智能与机器人开发者大会技术突破明珠奖

  • 2019.11,《仪器仪表学报》年度优秀论文

  • 2017.01,《智能系统学报》第三届优秀论文

  • 2016.08,Best Advanced Robotics Paper Finalist, IEEE Int. Conf. Advanced Robotics and Mechatronics

  • 2015.06,Best Conference Paper Award Finalist, IEEE Int. Conf. CYBER Technology in Automation, Control, and Intelligent Systems

学生竞赛和创新项目获奖(指导教师):

  • 2023.12,“智疗-脑功能疾病诊疗智能辅助系统”获得首届全国人工智能应用场景创新挑战赛全国总决赛一等奖

  • 2021.10,第七届中国国际“互联网+”大学生创新创业大赛高教主赛道天津市一等奖、全国总决赛铜奖

  • 2021.10,中美青年创客大赛天津赛区第一名

  • 2017.07,第七届“华为杯”全国大学生智能设计竞赛三等奖

  • 2016.05,南开大学本科生创新科研计划优秀项目二等奖

  • 2015.08,第五届“华为杯”全国大学生智能设计竞赛一等奖

  • 2015.08,第五届“华为杯”全国大学生智能设计竞赛二等奖

撰写论文、专著、教材等

代表论文 Selected Publications

(1)脑-肢功能和障碍的量化分析

  • Subject-Specific Modeling of EEG-fNIRS Neurovascular Coupling by Task-Related Tensor Decomposition, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 452-461. https://doi.org/10.1109/TNSRE.2024.3355121.

  • An Adaptive Oscillator-Driven Gait Phase Model for Continuous Motion Estimation Across Speeds, IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-14. https://doi.org/10.1109/TIM.2024.3381303.

  • A dynamic brain network decomposition method discovers effective brain hemodynamic sub-networks for Parkinson's disease, Journal of Neural Engineering, 2024, 21(2): 026047. https://doi.org/10.1088/1741-2552/ad3eb6.

  • fNIRS-based graph frequency analysis to identify mild cognitive impairment in Parkinson's disease, Journal of Neuroscience Methods, 2024, 402: 110031. https://doi.org/10.1016/j.jneumeth.2023.110031.

  • A small-sample time-series signal augmentation and analysis method for quantitative assessment of bradykinesia in Parkinson's disease, Intelligence & Robotics, 2024, 4(1): 74-86. https://doi.org/10.20517/ir.2024.05.

  • An fNIRS-Based Dynamic Functional Connectivity Analysis Method to Signify Functional Neurodegeneration of Parkinson's Disease, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1199-1207. https://doi.org/10.1109/TNSRE.2023.3242263.

  • An EEG-fNIRS neurovascular coupling analysis method to investigate cognitive-motor interference, Computers in Biology and Medicine, 2023, 160: 106968. https://doi.org/10.1016/j.compbiomed.2023.106968.

  • Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 4703-4712. https://doi.org/10.1109/TNSRE.2023.3336317.

  • Video-Based Quantification of Gait Impairments in Parkinson's Disease Using Skeleton-Silhouette Fusion Convolution Network, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 2912-2922. https://doi.org/10.1109/TNSRE.2023.3291359.

  • Increased Effective Connectivity of the Left Parietal Lobe During Walking Tasks in Parkinson's Disease, Journal of Parkinson's Disease, 2023, 13(2): 165-178. https://doi.org/10.3233/JPD-223564.

  • Fronto-parietal cortex activation during walking in patients with Parkinson's disease adopting different postural strategies, Frontiers in Neurology, 2022, 13: 998243. https://doi.org/10.3389/fneur.2022.998243.

  • Robust motion estimation with user-independent sEMG features extracted by correlated components analysis, Measurement and Control, 2022: 00202940221105092.

  • Plantar pressure-based temporal analysis of gait disturbance in idiopathic normal pressure hydrocephalus: Indications from a pilot longitudinal study, Computer Methods and Programs in Biomedicine, 2022, 217: 106691. https://doi.org/10.1016/j.cmpb.2022.106691.

  • Quantitative assessment of gait characteristics in patients with Parkinson's disease using 2D video, Parkinsonism & Related Disorders, 2022, 101: 49-56. https://doi.org/10.1016/j.parkreldis.2022.06.012.

  • fNIRS-based brain state transition features to signify functional degeneration after Parkinson's disease, Journal of Neural Engineering, 2022, 19(4): 046038. https://doi.org/10.1088/1741-2552/ac861e.

  • A Functional Region Decomposition Method to Enhance fNIRS Classification of Mental States, IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5674-5683. https://doi.org/10.1109/JBHI.2022.3201111.

  • 帕金森病患者上肢运动迟缓数字化测评, 中国现代神经疾病杂志, 2020, 20(8): 721-726.

(2)功能神经调控

  • Brain Temporal-Spectral Functional Variability Reveals Neural Improvements of DBS Treatment for Disorders of Consciousness, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 923-933. https://doi.org/10.1109/TNSRE.2024.3368434.

  • Effective DBS treatment improves neural information transmission of patients with disorders of consciousness: an fNIRS study, Physiological Measurement, 2023.  https://doi.org/10.1088/1361-6579/ad14ab.

  • fNIRS-based functional connectivity signifies recovery in patients with disorders of consciousness after DBS treatment, Clinical Neurophysiology, 2023, 147: 60-68. https://doi.org/10.1016/j.clinph.2022.12.011.

  • A non-contact system for intraoperative quantitative assessment of bradykinesia in deep brain stimulation surgery, Computer Methods and Programs in Biomedicine, 2022, 225: 107005. https://doi.org/10.1016/j.cmpb.2022.107005.

  • 帕金森病脑深部电刺激术中运动迟缓量化测评初探, 中华神经外科杂志, 2022, 38(11): 1114-1119.

  • Quantified assessment of deep brain stimulation on Parkinson's patients with task fNIRS measurements and functional connectivity analysis: a pilot study, Chinese Neurosurgical Journal, 2021, 7(1): 34. https://doi.org/10.1186/s41016-021-00251-3.

(3)机器人自主行为与人机交互控制 

  • Modeling and Adaptive Control for Tendon Sheath Artificial Muscle Actuated Bending-Tip Systems With Unknown Parameters and Input Hysteresis: An Experimental Research, IEEE Transactions on Industrial Electronics, 2023, 70(10): 10588-10597. https://doi.org/10.1109/TIE.2022.3219105.

  • Barrier Function-Based Adaptive Control of Twisted Tendon-Sheath Actuated System With Unknown Rigid–Flexible Coupling for Robotic Ureteroscopy, IEEE/ASME Transactions on Mechatronics, 2023: 1-11. https://doi.org/10.1109/TMECH.2023.332805

  • Modeling and Robust Control for Tendon–Sheath Artificial Muscle System Twist With Time-Varying Parameters and Input Constraints: An Exploratory Research, IEEE Transactions on Industrial Electronics, 2023, 70(1): 878-887. https://doi.org/10.1109/TIE.2021.3134084.

  • Robust Admittance Control for Human Arm Strength Augmentation With Guaranteed Passivity: A Complementary Design, IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5936-5947. https://doi.org/10.1109/TMECH.2022.3191469.

  • Active Modeling and Control of the Ring-Shaped Pneumatic Actuator: An Experimental Study, IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 2918-2929. https://doi.org/10.1109/TMECH.2021.3128228.

  • A novel ESMF-based observer and control scheme for a type of tendon-sheath hysteresis system, Automatica, 2021, 131: 109800. https://doi.org/10.1016/j.automatica.2021.109800.

  • Passivity guaranteed stiffness control with multiple frequency band specifications for a cable-driven series elastic actuator, MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 117: 709-722. https://doi.org/10.1016/j.ymssp.2018.08.007.

  • Enhanced Autonomous Exploration and Mapping of an Unknown Environment with the Fusion of Dual RGB-D Sensors, ENGINEERING, 2019, 5(1): 164-172. https://doi.org/10.1016/j.eng.2018.11.014.

  • 有限频域约束下串联弹性驱动器的刚度控制, 控制理论与应用, 2019, 36(5): 711-719.

  • Impedance control of a cable-driven SEA with mixed H-2/H-infinity synthesis, ASSEMBLY AUTOMATION, 2017, 37(3): 296-303. https://doi.org/10.1108/AA-11-2016-150.

  • Augmented virtual stiffness rendering of a cable-driven SEA for human-robot interaction, IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 714-723. https://doi.org/10.1109/JAS.2017.7510637.

(4)机器人硬件和软件系统与康复训练方法

  • A Virtual Channel Based Data Augmentation Method for Electrical Impedance Tomography, IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11. https://doi.org/10.1109/TIM.2022.3212757.

  • 帕金森病康复机器人研究综述与展望, 机器人, 2022, 44(3): 368-384. https://doi.org/10.13973/j.cnki.robot.210263.

  • 一种脑肢融合的神经康复训练在线评价与调整方法, 自动化学报, 2022, 48(5): 1209-1219. https://doi.org/10.16383/j.aas.c200452.

  • 基于表面肌电信号的智能康复技术, 人工智能, 2022(3): 34-43. https://doi.org/10.16453/j.cnki.ISSN2096-5036.2022.03.003.

  • 一种基于生成对抗网络的无监督域自适应磁共振图像分割方法, 生物医学工程学杂志, 2022, 39(6): 1181-1188.

  • 基于深度学习的膝关节MR图像自动分割方法, 仪器仪表学报, 2020, 41(6): 140-149. https://doi.org/10.19650/j.cnki.cjsi.J2006199.

  • 基于共享控制的人机灵巧力触觉交互系统设计与实现, 仪器仪表学报, 2017, 38(3): 602-611. https://doi.org/10.19650/j.cnki.cjsi.2017.03.012.

  • Fusion of Haptic and Gesture Sensors for Rehabilitation of Bimanual Coordination and Dexterous Manipulation, SENSORS, 2016, 16(3). https://doi.org/10.3390/s16030395.

  • 一种面向步态和平衡康复训练的单绳悬吊主动减重系统设计与控制方法研究, 自动化学报, 2016, 42(12): 1819-1831. https://doi.org/10.16383/j.aas.2016.c160215.

专著章节 Book Chapters
  • Ningbo Yu (于宁波), Christoph Hollnagel, Armin Blickenstorfer, Spyros S. Kollias, Robert Riener, “fMRI-Compatible Robotic Interfaces with Fluidic Actuation”, Robotics: Science and Systems IV, MIT Press, 2009.

    讲授课程

    • 自动检测技术与系统 (本科专业必修课程)

    • 过程控制系统(本科专业必修课程)

    • 医疗康复机器人(研究生课程)

    • AI and Robots in Medicine (南开大学“全球一流高校交流项目”课程,英文)


    社会兼职与学术服务

    • IEEE TEMS-SMD 智能医疗数字技术专委会理事(2022-2025)

    • 中国人工智能学会教育工作委员会副秘书长(2015-2022)、委员(2022-)

    • 中国神经科学会意识障碍分会委员(2024-)

    • 天津市康复医学会脑损伤与脑卒中康复专委会副主委(2020-2023)、帕金森康复专委会副主委(2023-2026)

    • 天津市康复医学会康复工程专委会副主委(2021-2025)

    • 天津市机械工程学会理事(2021-)

    • IEEE AIM 2021 Program Co-Chair,IEEE ROBIO 2021 Program Co-Chair




    上一条:杨柳 下一条:詹志辉

    关闭