讲授课程
第一作者或者通信作者作品
1) 专著
孙明玮,马顺健,朴敏楠,王永坤,李毅。高超声速飞行器自抗扰控制方法。北京:科学出版社,2018。
2) SCI期刊
(45) LONG Xinyu, SUN Mingwei, CHEN Zengqiang. Dynamic modeling and stability analysis of parafoil traction cable for high altitude wind power generation. Structures, 2023, 58: 105454 (1-12).
(44) ZHOU Yu, GAO Shuo, SUN Mingwei, ZHOU Yajing, ZHANG Jianhong, CHEN Zenqiang.Chaos recognition using deep learning and transfer learning on recurrence plots. International Journal of Bifurcation and Chaos, 2023, 33(10), 2350116 (1-13).
(43) YAN Kun, JIANG Ju, SUN Mingwei, CHEN Zenqiang.Coordinated symmetrical altitude position and attitude control for stratospheric airship subject to strong aerodynamic uncertainties. Symmetry-Basel, 2023, 15, 1260 (1-23).
(42) ZHOU Yu, LI Jiedong, SUN Mingwei, ZHANG Jianhong, CHEN Zengqiang. Cascade control design for supercavitating vehicles with actuator saturation and the estimation of the domain of attraction. Ocean Engineering, 2023, 282: 114996 (1-8). (41) LONG Xinyu, SUN Mingwei, CHEN Zengqiang. Efficient trajectory planning and tracking control for underactuated crane. Control Engineering and Applied Informatics, 2023, 25(2): 35-43. (40) LI Jiedong, SUN Mingwei, CHEN Zengqiang. An add-on damping enhancement with adjustable gain for lightly damped system. Mechanical Systems and Signal Processing, 2023, 191: 110179 (1-14). (39) LONG Xinyu, SUN Mingwei, CHEN Zengqiang, WANG Yongshuai. Coupled trajectory optimization and tuning of tracking controllers for parafoil generator. International Journal of Green Energy, 2023, 20(8): 803-815. (38) WANG Yongshuai, CHEN Zengqiang, SUN Mingwei, SUN Qinglin. A novel implementation of an uncertain dead-zone-input-equipped extended state observer and sign estimator. Information Sciences, 2023, 626: 75-93. (37) ZHOU Yajing, LONG Xinyu, SUN Mingwei, CHEN Zengqiang. Bearing fault diagnosis based on Gramian angular field and DenseNet. Mathematical Biosciences and Engineering, 2022, 19(12): 14086-14101. (36) ZHOU Yu, SUN Mingwei, ZHANG Jianhong, CHEN Zengqiang. Depth and attitude coordinated control for supercavitating vehicle avoiding planing force. Machines, 2022, 10(6): 433(1-18). (35) LI Jiedong, BAO Yunpeng, SUN Mingwei, LIU Shengfei, CHEN Zengqiang. Hybrid circuit actuator design for ship course control experiment. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(7): 3329-3333. (34) PIAO Minnan, TAN Panlong, WANG Ying, SUN Mingwei, LU Biao, CHEN Zengqiang. Disturbance observer-based robust motor control enhanced by adaptive neural network in the absence of velocity measurement. International Journal of Robust and Nonlinear Control, 2022, 32(9): 5023-5047. (33)ZHANG Yunxi, FAN Yu, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Practical integrated guidance & control for the high-speed anti-ship missile to counter switching targets under a short time-to-go condition. International Journal of Aeronautical & Space Sciences, 2022, 23: 143-156. (32)TAN Panlong, SUN Mingwei, SUN Qinglin, CHEN Zengqiang. Linear stabilization control for underactuated RTAC based on model reconstruction. IEEE/ASME Transactions on Mechatronics, 2022, 27(3): 1640-1650. (31)LONG Xinyu, SUN Mingwei, PIAO Minnan, CHEN Zengqiang. Parameterized trajectory optimization and tracking control of high altitude parafoil generator. Energies, 2021, 14(22): 7460(1-20). (30)PIAO Minnan, WANG Ying, SUN Mingwei, ZHANG Xinhua, CHEN Zengqiang, YAN Yongyi. Fixed-time-convergent generalized extended state observer based motor control subject to multiple disturbances. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8066-8079. (29)CHEN Zhigang, WANG Ying, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Practical energy dissipation control of near space glider on independent longitudinal plane. International Journal of Aerospace Engineering, 2020, 8854837(1-22).
(28)GAO Haitao, CHEN Zhigang, SUN Mingwei, HUANG Jian, WANG Zenghui, CHEN Zengqiang. An efficient fast altitude control for hypersonic vehicle. Control Engineering Practice, 2020, 100: 104426(1-13). (27)GAO Haitao, CHEN Zhigang, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. General periodic cruise guidance optimization for hypersonic vehicles. Applied Sciences-Basel, 2020, 10(8), 2898(1-13). (26)TAN Panlong, SUN Mingwei, SUN Qinglin, CHEN Zengqiang. Dynamic modeling and experimental verification of powered parafoil with two suspending points. IEEE Access, 2020, 8(1): 12955-12966. (25)SUN Mingwei, ZHANG Youan, LIU Jingmao, HUANG Jian, WANG Zenghui, CHEN Zengqiang. Explicit parameterized energy management for scramjet transition. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 798-809. (24)PIAO Minnan, SUN Mingwei, HUANG Jian, WANG Zenghui, CHEN Zengqiang. Partial integrated guidance and control design for supersonic missile based on disturbance rejection. Measurement and Control, 2019, 52(9-10): 1445-1460. (23)PIAO Minnan, ZHANG Youan, SUN Mingwei, YANG Zhihong, WANG Zenghui, CHEN Zengqiang. Adaptive aeroservoelastic mode stabilization of flexible airbreathing hypersonic vehicle. Journal of Vibration and Control, 2019, 25(15): 2124-2142. (22)LIU Junjie, CHEN Zengqiang, SUN Mingwei, SUN Qinglin. Practical coupling rejection control for Herbst maneuver with thrust vector. AIAA Journal of Aircraft, 2019, 56(4): 1726-1734. (21)PIAO Minnan, YANG Zhihong, SUN Mingwei, HUANG Jian, CHEN Zengqiang. A practical attitude control scheme for hypersonic vehicle based on disturbance observer. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(12): 4523-4540. (20)PIAO Minnan, YANG Zhihong, SUN Mingwei, HUANG Jian, WANG Zenghui, CHEN Zengqiang. Synthesis of attitude control for statically unstable hypersonic vehicle with low-frequency aero-servo-elastic effect. Aerospace Science and Technology, 2018, 60: 67-77. (19)WU Qixia, SUN Mingwei, YANG Zhihong, WANG Zenghui, CHEN Zengqiang. Tuning of active disturbance rejection attitude controller for statically unstable launch vehicle. AIAA Journal of Spacecraft and Rockets, 2017, 54(6): 1383-1389. (18)SUN Mingwei, GAO Zhiqiang, WANG Zenghui, ZHANG Yuan, CHEN Zengqiang. On the model-free compensation of Coulomb friction in the absence of the velocity measurement. ASME Journal of Dynamic Systems, Measurement and Control, 2017, 139(12): 125001(1-6). (17)WANG Yongkun, SUN Mingwei, DU Shengzhi, CHEN Zengqiang. Comparative investigations of nonlinear and linear observers for a highly manoeuvrable target in sliding mode guidance. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2017, 65(2): 233-245. (16)WANG Yongkun, LIU Zhongxin, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Adaptive backstepping attitude control with disturbance rejection subject to amplitude and rate saturations of the elevator. ASCE's Journal of Aerospace Engineering, 2017, 30(3): 04016095. (15)WU Qixia, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Practical solution to efficient flight path control for hypersonic vehicle. Transactions of the Japan Society for Aeronautical and Space Sciences, 2016, 59(4): 195-204. (14)LI Yi, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. PID attitude control subject to dynamic rate saturation of elevator through explicit command reshaping: An engineering approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2016, 230(6): 562-577. (13)LI Yi, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Quantitative analysis of critical limitation in using extended state observer. International Journal of Control, Automation and Systems, 2016, 14(3): 876-882. (12)LIU Wei, MA Shunjian, SUN Mingwei, YI Haidong, WANG Zenghui, CHEN Zengqiang. Sequential quadratic programming-based fast path planning algorithm subject to no-fly zone constraints. Engineering Optimization, 2016, 48(8): 1401-1418. (11)ZHANG Yuan, SUN Mingwei, CHEN Zengqiang. Unified linear time-invariant model predictive control for strong nonlinear chaotic systems. Nonlinear Analysis: Modeling and Control, 2016, 21(5): 587-599. (10)张园,徐琦,孙明玮,陈增强。基于快速全线性预测控制的混沌系统控制与同步。物理学报,2015,64(1):010512(1-7)。
(9)SUN Mingwei, XU Qi, DU Shengzhi, CHEN Zengqiang, ZHANG Dexian. Practical solution to impact angle control in vertical plane. AIAA Journal of Guidance, Control, and Dynamics, 2014, 37(3): 1022-1027. 本人学术领域最值得自豪的一个无心插柳的工作,获得了导弹制导领域应用技术权威Zarchan的承认,他作为AE,在2个审稿人给出完全相反的结论后,他的认可使得本文最终经过3轮审稿而接受。下面附为当时的完整初审意见。 Reviewer Comments :
Reviewer 1. 1. The authors' claim about existing guidance laws that "range between missile and target is necessary in all these cases" is not true. For example, the biased proportional navigation just has an additional term based on angluar error. Also, the following two stage proportional navigation guidance laws do not rely on range to target information. Ashwini Ratnoo and Debasish Ghose. "Impact Angle Constrained Interception of Stationary Targets", Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6 (2008), pp. 1817-1822. doi: 10.2514/1.37864 Ashwini Ratnoo and Debasish Ghose. "Impact Angle Constrained Guidance Against Nonstationary Nonmaneuvering Targets", Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1 (2010), pp. 269-275. doi: 10.2514/1.45026 2. The guidance law in (7) is a typical proportional control and will result in oscillations in the lateral acceleration command. 3. For the range to target (r_{tf}) to go to zero as in (17), the authors state that the guidance command of (7) is an integral form on proportional navigation. This is not true since proportional navigation command in independent of the impact angle. Hence the proposition does not have a valid proof. 4. Later, in section IV the authors derive a guidance command for the autopilot. Considering the first order dynamics the guidance command of (26) has an LOS rate term plus a bias term proportional to angular error. This is precisely the idea behind Biased Proportional Navigation!! 5. Table 2 presents the results. Here we have miss distances up to 2 m for kinematic simulations with the guidance command of (7). That is expected with the proportional control. Further, with the autopilot and a command almost identical to BPNG the miss distances improve. Comparison with proportional navigation makes no sense when we have tens of impact angle constrained guidance laws in the Literature. All in all the note lacks any contribution on theoretical, analytic or simulations front.
Reviewer 2. By adopting the idea of employing the integrated form of the classical PN equation as the guidance law, this note presents one of the most elegant solutions to the impact angle control problem against stationary targets. Instead of acceleration commands, the guidance law issues flight path angle commands and since the flight path angle control loop will be slower that the acceleration control loop, the authors suggest an augmentation to the guidance law. As an integrated guidance and control approach, the augmented guidance law accounts for the (first order) missile dynamics so that smaller miss distance values are achievable. There is also included a method to estimate the time constant of the acceleration control loop. Overall, the manuscript, the publication of which I strongly advocate, provides a number of useful ideas in a few pages. My other comments are listed below. Major Comments * Why do the authors feel the need to underline that the method they propose does not need range information? There exist other methods in the literature that do not need such information to impose an impact angle. One of these is: Ratnoo, A., and Ghose, D., “Impact Angle Constrained Interception of Stationary Targets,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1816–1821. I think the title would not lose its importance if it was modified as "Integrated Guidance and Control with Specified Impact Angle". * The simulations section should be enhanced with more figures. One drawback of the proposed guidance law, i.e. Eq. (7), is that it will lead to high altitude trajectories due to the fact that it does not attempt to bend the trajectory naturally formed by the PN law (because it itself is the PN law!). The higher the navigation constant K is, the higher the maximum altitude will be. Hence, the authors need to provide at least a couple of trajectories with different K in the stationary target case.
Minor Comments * Throughout the paper, many references are cited without their key ideas being revealed. Please be more concise. * This is not the first time that the integrated form of PN has been employed to control the impact angle. The authors seem to be missing at least the paper mentioned in the first major comment. * The authors state that one of the drawbacks of using Eq. (7) is that it does not employ the LOS rate. Should we still employ the LOS rate even when the acceleration loop is fast enough, i.e. T-->0? Furthermore, in an application with a strapdown seeker, the designer might try to avoid using the LOS rate since it is not available directly. Please elaborate on this subject. * The simulation runs show that Eq. (26) performs better than Eq. (7) in terms of miss distance. This makes intuitive sense; however, is there a formal proof capturability of Eq. (26)? An adjoint analysis would be very useful here. * How does Eq. (27) lead to Eqs. (29)? The necessary references about the estimation algorithm need to be cited.) (8)QIU Demin, SUN Mingwei, WANG Zenghui, WANG Yongkun, CHEN Zengqiang. Practical wind disturbance rejection for large deep space observatory antenna. IEEE Transactions on Control Systems Technology, 2014, 22(5): 1983-1990. (7)SUN Mingwei, ZHANG Limin, WANG Zenghui, CHEN Zengqiang. PID pitch attitude control for unstable flight vehicle in the presence of actuator delay: tuning and analysis. Journal of the Franklin Institute, 2014, 351(12): 5523-5547. (6)WANG Yongkun, SUN Mingwei, WANG Zenghui, LIU Zhongxin, CHEN Zengqiang. A novel disturbance-observer based friction compensation scheme for ball and plate system. ISA Transactions, 2014, 53(2): 671-678. (5)SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Practical solution to attitude control within wide envelope. Aircraft Engineering and Aerospace Technology, 2014, 86(2), 117-128. (4)ZHANG Limin, SUN Mingwei, CHEN Zengqiang, WANG Zenghui, WANG Yongkun. Receding horizon trajectory optimization with terminal impact specifications. Mathematical Problems in Engineering, 2014, 604705(1-8). (3)SUN Mingwei, WANG Zenghui, WANG Yongkun, CHEN Zengqiang. On low-velocity compensation of brushless DC servo in the absence of friction model. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3897 - 3905. (2)SUN Mingwei, YANG Ruiguang, WANG Zenghui, CHEN Zengqiang. Stability margin based PD attitude control tuning for unstable flight vehicle. International Journal of Systems Science, 2013, 44(2): 240-251. (1)SUN Mingwei, YANG Ruiguang, CHEN Zengqiang. Genuine feasible stability margin region for integrating unstable processes with PD control. IET Control Theory Applications, 2011, 5(10): 1228-1234.
3) 国内EI期刊
(18) 孙明玮,周瑜,张建宏,陈增强。超空泡航行体深度跟踪串级控制策略。国防科技大学学报,2023,45(6):205-214。 (17) 孙明玮,周瑜,朴敏楠,陈增强,陈志刚。雷达框架角约束下高空巡航导弹末制导策略。哈尔滨工程大学学报,2021, 42(7):1070-1075。 (16) 朴敏楠,王颖,周亚靖,孙明玮,张新华,陈增强。自抗扰控制框架下的摩擦力振动分析。力学学报,2020, 52(5):1485-1497。 (15) 朴敏楠,陈志刚,孙明玮,陈增强。高超声速飞行器气动伺服弹性的自适应抑制。航空学报,2020, 41(11):623698(1-15)。 (14) 朴敏楠,王科磊,孙明玮,黄建,陈增强。基于积分泄露的机电伺服系统摩擦力补偿。中南大学学报(自然科学版),2020, 51(3):668-677。 (13) 朴敏楠,杨志红,孙明玮,黄建,陈增强。弹性静不稳定高超声速飞行器姿态综合控制。中国科学:技术科学,2019, 49(7): 825-839。 (12) 张园,孙明玮,陈增强。强制循环蒸发系统线性自抗扰解耦控制的鲁棒设计。化工学报,2015,66(S2):263-270。 (11) 张利民,孙明玮,刘东辉,全胜,陈增强。翼伞发电系统的GPU并行轨迹优化。电机与控制学报,2015,19(8):88-94。 (10) 王永坤,孙明玮,刘忠信,陈增强。挠性系统谐振频率摄动范围的几何解法。哈尔滨工业大学学报,2015,47(1):86-91。 (9)孙明玮,徐琦,陈增强,张德贤。自抗扰三回路过载驾驶仪的设计。北京理工大学学报,2015,35(6):592-596。 (8)孙明玮,张利民,陈增强。导弹三回路过载驾驶仪设计频带的灵敏度分析方法。兵工学报,2014,35(12):2023-2029。 (7)周昆,孙明玮,陈增强。快速显式预测控制在倒立摆系统中的应用。仪器仪表学报,2014,35(9):2037-2044。 (6)孙明玮,邱德敏,王永坤,陈增强。大口径深空探测天线抗风干扰伺服系统设计。光学 精密工程,2013,21(6):1568-1575。 (5)孙明玮,焦纲领,陈增强。基于混沌优化的再入飞行器滚动时域轨迹设计。宇航学报,2012,33(12):1711-1718。 (4)孙明玮,焦纲领,杨瑞光,陈增强。PI控制下开环不稳定对象可行稳定裕度范围的研究。自动化学报,2011,37(3):385-388。 (3)孙明玮,王健,薛丽华。飞航导弹动力装置的预测控制设计。推进技术,2004,25(3):230-232。 (2)孙明玮,陈增强,袁著祉。β增量型广义预测控制。控制理论与应用,2000,17(2):165-168。 (1)孙明玮,陈增强,袁著祉。典型工业过程的无超调预测控制设计。控制与决策,2000,15(2):213-216。 4) 重要国际会议
(16) LONG Xinyu, WANG Yongshuai, SUN Mingwei, CHEN Zengqiang. Variable mass tether modeling of airborne wind energy system. 2024 Airborne Wind Energy Conference (AWEC), Madrid, Spain, 24-26 April, 2024.
(15) RAN Sheng, ZHENG Baolin, SUN Mingwei. SDBC: A novel and effective self-distillation backdoor cleansing approach. Proceedings of 2023 International Conference on Neural Information Processing, ICONIP 2023, Part VI, CCIS 1966, China, Changsha, 20-23 November, 2023. (14) PIAO Minnan, CHEN Zhigang, SUN Mingwei, ZHANG Xinhua, CHEN Zengqiang. Practical adaptive notch filter design for aeroservoelasticity suppression of high-speed vehicle. Proceedings of International Conference on High-Speed Vehicle Science Technology, Bruges, Belgium, 11-15 September, 2022.
(13) PIAO Minnan, WANG Ying, SUN Mingwei, CHEN Zengqiang. Friction compensation and limit cycle suppression at low velocities based on extended state observer. IFAC-PaperOnLine, 2020, 53(2): 1313-1318. (12) GAO Haitao, SUN Mingwei, CHEN Zengqiang. Hypersonic periodic cruise trajectory optimization based on flexible use of pseudo-spectral method. Proceedings of 2019 Chinese Intelligent Systems Conference, Lecture Notes in Electrical Engineering 593, 2019, Haikou, China: 107-116, 2020. (11) SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Parametric trajectory optimization of boost-glider. Proceedings of the 15th International Conference on Space Operations, May 28- June 1, 2018, Marseille, France: Paper AIAA-2018-2593. (10) LI Junfang, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Chaotic optimization of tethered kites for wind energy generator. Proceedings of the 13th International Conference on Intelligent Computing, August 7-10, 2017, Liverpool, UK: 587-599. (9) WANG Yongkun, LIU Zhongxin, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. Practical MPC solution to attitude control independent of angular velocity measurements. Proceedings of the 13th IEEE International Conference on Control and Automation, July 3-5, 2017, Ohrid, Macedonia: 630-635. (8) MA Shunjian, ZHU Kai, SUN Mingwei, WANG Zenghui, CHEN Zengqiang. On active decoupling control for horizontal-lateral direction of hypersonic flight based on HIFOO. Proceedings of the 21st AIAA International Space Plane and Hypersonic Systems and Technology Conference, March 6-9, 2017, Xiamen, China: Paper AIAA-2017-2255. (7) PIAO Minnan, ZHU Kai, SUN Mingwei, CHEN Zengqiang. A unified angle control scheme for hypersonic vehicle based on disturbance rejection. Proceedings of the 21st AIAA International Space Plane and Hypersonic Systems and Technology Conference, March 6-9, 2017, Xiamen, China: Paper AIAA-2017-2175. (6) YANG Zhihong, ZHU Kai, SUN Mingwei, WANG Zenghui. Practical guidance design for the boost phase of hypersonic vehicle subject to terminal scramjet transition constraints. Proceedings of the 21st AIAA International Space Plane and Hypersonic Systems and Technology Conference, March 6-9, 2017, Xiamen, China: Paper AIAA-2017-2139. (5) WANG Yuan, WANG Yongkun, SUN Mingwei, DU Shengzhi, CHEN Zengqiang. Neural networks based formation control of anti-ship missiles with constant velocity. Proceedings of the 13th IEEE International Conference on Pervasive Intelligence and Computing (PICom-2015), October 26-28, 2015, Liverpool, England, UK. (4)SUN Mingwei, GAO Zhiqiang, DU Shengzhi, CHEN Zengqiang. On active disturbance rejection based framework for flight control: Principle and applications. Proceedings of the 6th European Conference for Aeronautics and Space Sciences (EUCASS), June 29-July 3, 2015, Krakow, Poland. (3)SUN Mingwei, ZHANG Yuan, ZHANG Limin, WANG Zenghui, CHEN Zengqiang. Numerical solving method for specific dynamic performance of unstable flight dynamics with PD attitude control. Proceedings of the ICCSAM 2015: 17th International Conference on Computer Science and Applied Mathematics, April 13-14, 2015, Venice, Italy: 313-319. (2)SUN Mingwei, CHEN Zengqiang, DU Shengzhi. Graphical description of autopilot robustness to aerodynamic uncertainties. The 2013 Asian Control Conference, Istanbul, Turkey, June 23-26, 2013. (1)SUN Mingwei, CHEN Zengqiang, YUAN Zhuzhi. A practical solution to some problems in flight control. Proceedings of IEEE Control & Decision Conference, Shanghai, China, December 16-18, 2009, 1482-1487. 5) 国内核心期刊
(21) 张婷玉,孙明玮,王永帅,陈增强。基于深度Q网络的近距空战智能机动决策研究。航空兵器,2023,30(3):41-48。 (20) 孙明玮,马顺健,陈增强,胡超芳。飞行器定时航迹规划及其交互仿真平台设计。系统仿真学报,2018,30(8):2966-2972。 (19) 张园,孙明玮,陈增强,袁著祉。基于扩张状态观测器的广义预测控制。系统科学与数学,2014,34(11):1366-1378。 (18) 孙明玮,史莹晶,马广富。基于指令分解的导弹复合控制方法研究。弹道与制导学报,2008,28(1):1-3。 (17) 孙明玮,刘丽,杨明。飞航导弹双平面纵向综合制导技术。中国工程科学,2007,9(9):52-57。 (16) 孙明玮。反舰导弹机动与导引配合的弹道设计研究。现代防御技术,2007,35(1):23-26。
(15) 孙明玮,刘丽,薛丽华。一种简化的综合制导设计技术。战术导弹技术,2007,(1):62-66。 (14) 孙明玮。21世纪对精确打击弹药制导技术的需求。飞航导弹,2006,(2):49-59。 (13) 孙明玮,彭楠南,杨明。导弹最优滑翔弹道的设计及存在的问题。飞行力学,2006,24(1):26-29。 (12)孙明玮,杨明。飞航导弹新型工程化控制方法研究的一些思考。战术导弹技术,2005,(5):38-43。 (11)孙明玮,陈增强,袁著祉,任强,杨明。飞航导弹高精度自适应预测控制设计。中国工程科学,2005,7(10):23-27。 (10)孙明玮,彭楠南,魏毅寅,杨明。指定入射角的飞航导弹末段俯冲弹道设计。航天控制,2005,23(1):62-64。 (9)孙明玮,韩京梅,王新华,陈增强,袁著祉。混合控制系统的稳定裕度分析与计算。计算机测量与控制,2004,12(6):527-528。 (8)孙明玮,张奇,邵继法,陈增强,袁著祉。鲁棒递推阻尼最小二乘算法。航空计算技术,2003,33(1):22-25。 (7)孙明玮,韩京梅,陈增强,袁著祉。利用Matlab优选PID参数及其在飞控系统设计中的应用。计算机仿真,2003,20(1):47-49。 (6)孙明玮,陈增强,袁著祉。变结构控制中滑模与模型选取的若干原则。控制工程,2003,10(6):481-483。 (5)孙明玮,陈增强,袁著祉。输出增量反馈思想。信息与控制,2002,31(1):5-8。 (4)孙明玮。关于选取飞航导弹控制方法的思考—兼论继承与创新的关系。飞航导弹,2001,(9):52-53。 (3)孙明玮,陈增强,袁著祉。具有稳定性的约束预测控制。系统工程学报,2000,15(3):262-266。 (2)孙明玮,陈增强,袁著祉。无限时域预测控制的直接求解方法。应用数学,2000,13(3):5-9。 (1)孙明玮,陈增强,袁著祉。基于小波分频设计的自适应PID控制器。南开大学学报(自然科学版),2000,33(2):48-52。 6) 国内非SCI或者EI的英文期刊
(1) SUN Mingwei, CHEN Zengqiang, YUAN Zhuzhi. The principle of robustness in generalized predictive control. Applied Mathematics-A Journal of Chinese Universities, 1999, Series B, 14(2): 293-300.
7) 国内非核心中文期刊
(8) 孙明玮,刘丽。导弹侧向机动控制的优化设计。战术导弹控制技术,2006,(4):3-6。 (7) 孙明玮。利用惯性垂速进行飞航导弹纵向导引设计。战术导弹控制技术,2006,(4):25-27。 (6) 孙明玮,陈志刚。基于虚拟导引的程序弹道快速生成技术。战术导弹控制技术,2006,(4):28-29。 (5) 孙明玮,陈志刚。指定倾角的小视场角攻击导引技术。战术导弹控制技术,2006,(4):30-33。 (4) 孙明玮,杨勇,陈增强,袁著祉,刘丽。导弹机动的混沌特性与控制能力分析。战术导弹控制技术,2005,(3):9-16。 (3) 孙明玮,程凤舟,杨明。双星导航与捷联惯导系统在快速载体组合制导中的应用研究。战术导弹控制技术,2004,(3):40-45。 (2) 孙明玮,张奇,邵继法。双星定位与惯导系统的高效实用融合方法。导航,2003,39(2):22-29。 (1) 孙明玮。发展跨海登陆作战武器的新思路。舰船论证参考,2001,(2):16-18。
8) 教改期刊
(1) 孙明玮,孙月,陈增强。“自动控制原理”难点知识的背景教学法。科教导刊,2022,(26):134-137。
9) 管理期刊
(2) 孙明玮。论国防科技部门科研氛围与科技创新的关系。航天工业管理,2007,(3):5-6。 (1) 孙明玮。建立新型弹性用人机制。航天工业管理,2002,(11):30-31。 其他作品
Zheng Yuemin, Chen Zengqiang, Huang Zhaoyang, Sun Mingwei, Sun Qinglin. Active Disturbance Rejection Controller for Multi-Area Interconnected Power System Based on Reinforcement Learning. Neurocomputing, 2021, 425: 149-159.
Liu Junjie, Sun Mingwei, Chen Zengqiang, Sun Qinglin. Super-Twisting Sliding Mode Control for Aircraft at High Angle of Attack Based on Finite-Time Extended State Observer. Nonlinear Dynamics, 2020, 99(4), 2785-2799.
Zhang Liming, Sun Mingwei, Cheng Qifeng, Chen Zengqiang; Zhang Xinghui. Integral Performance Optimization for the Two-Stage-to-Orbit RBCC-RKT Launch Vehicle Based on GPM. The Aeronautical Journal, 2019, 123(1265): 945-969.
张勇,陈增强,张兴会,孙明玮,孙青林。四旋翼无人机系统PD-ADRC串级控制。系统工程与电子技术,2018,40(9):2055-2061。
张勇,陈增强,张兴会,孙青林,孙明玮。基于自抗扰的四旋翼无人机动态面姿态控制。吉林大学学报(工学版),2018,42(1)。
Cheng Yun, Chen Zengqiang, Sun Mingwei, Sun Qinglin. Cascade Active Disturbance Rejection Control of a High-Purity Distillation Column with Measurement Noise. Industrial & Engineering Chemistry Research, 2018, 57(13): 4623-4631.
Wu Wannan, Sun Qinglin, Luo Shuzhen, Sun Mingwei, Chen Zengqiang, Sun Hao. Accurate Calculation of Aerodynamic Coefficients of Parafoil Airdrop System Based on Computational Fluid Dynamic. International Journal of Advanced Robotic Systems, 2018, 15(2): 1729881418766190.
Chen Zengqiang, Wang Yongshuai, Sun Mingwei, Sun Qinglin. Convergence and Stability Analysis of Active Disturbance Rejection Control for First-Order Nonlinear Dynamic Systems. Transactions of the Institute of Measurement and Control, 2019, 41(7): 2064-2076.
Wu Xia, Li Yi, Chen Zengqiang, Sun Mingwei. On The Design and Realization of Active Disturbance Rejection Generalized Predictive Control. IMA Journal of Mathematical Control and Information, DOI: 10.1093/imamci/dny027.
Wu Xia, Chen Zengqiang, Zhao Yue, Sun Lijun, Sun Mingwei. A Comprehensive Decoupling Control Strategy for A Gas Flow Facility Based on Active Disturbance Rejection Generalized Predictive Control. The Canadian Journal of Chemical Engineering, 2019, 97(3): 762-776.
程赟,陈增强,孙明玮,孙青林。多变量逆解耦自抗扰控制及其在精馏塔过程中的应用。自动化学报,2017,43(6):1080-1088。
Huang Yi, Xue Wenchao, Zhiqiang Gao, Hebert Sira-Ramirez, Wu Dan, Sun Mingwei. Active Disturbance Rejection Control: Methodology, Practice and Analysis. Proceedings of the 33rd Chinese Control Conference, July 28-30, 2014, Nanjing, China: 1-5 (Plenary Talk).
Wang Haitao, Zhao Dongbin, Sun Mingwei. Optimization of Periodic Optimal Cruise for a Hypersionic Vehicle. 2013 Chinese Automation Congress, November, 2013, Changsha, China.
Zhang Xuebo, Fang Yongchun, Sun Ning, Sun Mingwei. A Pseudospectral Time-Optimal Motion Planner for Underactuated Overhead Crane Systems. Proceedings of the 32nd Chinese Control Conference, July 26-28, 2013, Xi’an, China: 4397-4402.
张利民,孙明玮,陈增强,张兴会。基于伪谱法的定时定向航路规划方法研究。弹道学报,2013,25(3): 1-5。
Du Shengzhi, Tu Chunling, Sun Mingwei. High Accuracy Hough Transform Based on Butterfly Symmetry. Electronic Letters, 2012, 48(4): 199-201. Yang Ruiguang, Sun Mingwei, Chen Zengqiang. Active Disturbance Rejection Control on First-Order Plant. Journal of Systems Engineering and Electronics, 2011, 22(1): 95-102.
Wang Jian, He Linshu, Sun Mingwei. Application of Active Disturbance Rejection Control to Integrated Flight-Propulsion Control. Proceedings of the Chinese Control and Decision Conference, Xuzhou, China, 2010: 4397-4402.
任强,孙明玮,陈增强,袁著祉。非线性PID控制在导弹纵向飞行控制中的应用。江南大学学报(自然科学版),2006,5(4):411-414。
Lu Zhao, Sun Mingwei. Neuromorphic Continuous-time State Space Pole Placement Adaptive Control. Journal of Systems Engineering and Electronics. 2003, 14(1): 58-62.
陈增强,孙明玮,袁著祉,陈春艳。基于模糊神经网络的PI自适应控制器。华东理工大学学报,2002,28(增刊),45-48。
|