孙青林

2021年11月15日 09:57  点击:[]

基本信息

姓名:孙青林16DD8

性别:男

所属部门:自动化与智能科学系

职称:教授

学历:博士

所学专业:控制理论与控制工程

电子邮件sunql@nankai.edu.cn

研究方向:智能自适应控制、嵌入式控制系统、飞行器建模与智能控制

个人简介

1.学历、工作经历

1985年毕业于天津大学自动化系,获工学学士学位;

1990年毕业于天津大学自动化系,系获工学硕士学位;

2003年毕业于南开大学自动化系,系获工学博士学位;          

2006-2007年作为国家公派访问学者在牛津大学工程系进修;    

1985-1998年在天津理工学院自动化系任教;               

1998年起至今在南开大学自动化系任教。   

现为南开大学人工智能学院教授、博士生导师。


2.科研工作与研究方向

孙青林教授常年致力于智能自适应控制、柔性飞行器建模与控制、非线性系统控制、嵌入式控制系统、人工智能、自适应控制等领域的研究,课题组理论与实际工程并重,共发表SCI/EI检索论文200余篇,其中包含超过30篇中科院一区Top期刊,所设计的翼伞控制系统获得国内业界多家单位认可,并与课题组签订横向课题,为该系统所设计的伞降系统智能地面站获2020年天津市科技进步二等奖,所研究的航空电子氧气调节器的相关控制问题入选我国“智能制造行业的10个数学问题”。

主要研究方向包含:

(1)智能自适应控制技术及应用;

(2)柔性无人机(如翼伞空投系统、热气球等)的建模、轨迹规划与控制;

(3)航空氧气面罩电子调节器智能控制技术;

(4)复杂系统的智能控制技术、人工智能算法的应用等。


非常欢迎推免研究生及考研学生报名,可提前进入实验实习,特别欢迎自动化,力学,航空航天,智能,计算机,电子等不同专业的同学,每年可招收1-2名博士生,3-5名硕士。  

联系方式:sunql@nankai.edu.cn      

   


伞翼无人机相关技术为南开大学夺得2023年中国国际大学生创新创业大赛产业命题赛道金奖(原互联网+大赛)




3.学生培养

(1)课题组经费充足,十分重视对学生的培养,为组内学生提供充分的支持,助力学生迅速成长,学生毕业后均就职华为、腾讯、百度等企业,以及公务员、高校等各类事业单位。

在读:

郑月敏,2020级博士生(博二),目前已发表SCI/EI检索论文8篇,获2021年南开大学博士研究生国家奖学金及公能一等奖学金(与博三、博四学生同时评选,该年唯一博二学生获国奖及公能一等),目前前往法国里尔大学进行学术合作交流项目;

于振苹,2020级硕士生(研二),研一发表SCI二区文章1篇,获2021年南开大学硕士研究生国家奖学金及公能一等奖学金(与研学生同时评选,该年唯一研二学生获国奖及公能一等)。


(2)实验室具有充足的国内、国际交流资源,现有2名博士前往法国里尔大学进行合作交流,1名博士生前往法国里尔大学进行联合培养(5年,南开大学-里尔大学双博士学位),并有一名硕士生前往英国巴斯大学进行联合培养(南开大学-巴斯大学双硕士学位)。


科研项目、成果、获奖、专利

课题组承担项目:

[1] 翼伞自主归航雀降阶段控制方法研究,国家自然科学基金面上项目,80万,2013.1-2016.12。

[2] 基于数值虚拟飞行的伞翼无人机柔性建模与敏捷控制研究,国家自然科学基金面上项目,59万,2020.1-2023-12。

[3] XX翼伞XX,慧眼行动,199万元。2023.1-2024.12。

[4] 无人翼伞系统风场适应性航迹规划及抗扰控制研究,国家自然科学基金青年项目,30万,2021.1-2023.12。

[5] 基于异构多智能体协同与动力学约束的翼伞回收系统轨迹优化研究,国家自然科学基金青年项目,30万,2021.1-2023.12。

[6] 伞翼无人机航迹敏捷跟踪与抗扰优化控制研究,国家自然科学基金青年项目,30万,2022.1-2024.12。

[7] 翼伞飞行器飞行控制技术研究,国家重点研发计划项目子课题,30万,2020.07-2022.12。

[8] 基于复杂任务的多翼伞系统智能协同控制研究,天津市自然科学基金重点项目,20万,2019.04-2022.03。

[9] 基于复杂动力学特性的伞翼无人机的敏捷控制研究,中国博士后基金面上项目,8万元,2020.05-2022.5。

[10] 风场环境下无人翼伞系统自适应航迹规划及抗扰控制研究,中国博士后基金面上项目,8万,2020.05-2020.12。

[11] 无人车XX,201所横向课题,43万元,2024.1-2024.12;

[12] 水下无人系统XX,710所横向课题,14万,2024.1-2024.12

[13] 热气球空投过程仿真技术开发,航宇公司横向课题,50万。

[14] 大翼伞智能控制理论研究,北京空间机电研究所开放课题,10万元。

[15] 翼伞空投系统控制方法研究,西安现代控制技术研究所横向课题,15万元。

[16] 态势感之控制器研究,航宇公司,2015.08 -2016.04,横向课题,20万元。

[17] 氧气面罩气压自适应控制方法研究与实现,天津市重点基金,2014.04-2017.03, 20万元。

[18] 多气室飞艇超压控制仿真与控制规律设计技术研究,中国特种飞行器研究所,2012.10-2013.10,10万元。

[19] 基于自抗扰控制的电阻炉控制系统开发研究,兵器集团,2012.05-2014.04,70万元。

[20] 基于分布式并行智能方法的无线传感网络路径优化研究,教育部重点实验室开放基金,2011.09-2013.09。

[21] 基于无线传感网络的智能信号处理与传输,天津市重点基金,2010.04-2012.12,20万元

[22] 灾难环境下信息快速获取空投机器人系统关键技术研究,天津市支撑计划,2009.04-2012.03。

[23] An Intelligent Wireless Monitoring System for Solar Power Systems,emerson network power,2008.5--2009.12。

[24] 智能方法在生物信息学中的应用研究, 天津自然基金, 2001.4-2003.12。

[25] 长城卷烟机组电控板智能故障诊断系统,国家烟草专卖局,1996.1-1997. 12,1999年度国家烟草专卖局科技进步叁等奖(部级)。


获奖:

[1] 2023年中国国际大学生创新创业大赛,产业命题赛道,金奖,“火星之眼”- 御风飞行 星辰大海探索先驱

[2] 2020年天津市科技进步一等奖,高温多变量复杂生产体系节能减排理论方法与关键技术应用研究.

[3] 2020年天津市科技进步二等奖,伞降系统智能地面站.

撰写论文、专著、教材等

部分重要论文

English:

[1] Zhuang H, Sun Q, Chen Z, et al. Back-stepping sliding mode control for pressure regulation of oxygen mask based on an extended state observer[J]. Automatica, 2020, 119: 109106. (控制领域顶级期刊,Top期刊,IF:5.9)

[2] Li J, Zhang C, Sun Q, et al. Changing the intensity of interaction based on individual behavior in the iterated prisoner’s dilemma game[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(4): 506-517.(中科院1区,Top期刊,IF:11.5)

[3] Tao J, Sun Q, Sun H, et al. Dynamic modeling and trajectory tracking control of parafoil system in wind environments[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2736-2745.(中科院1区,Top期刊,IF:5.3)

[4] Jiang Y, Sun Q, Zhang X, et al. Pressure regulation for oxygen mask based on active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6402-6411.(中科院1区,Top期刊,IF:8.2)

[5] Tao J, Liang W, Sun Q L, et al. Modeling and control of a powered parafoil in wind and rain environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1642-1659.(航空航天领域顶级期刊,中科院1区,Top期刊,IF:4.1)

[6] Sun H, Sun Q, Zeng X, et al. Accurate Homing of Parafoil Delivery Systems Based Glide-Ratio Control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(3): 2374-2389.(航空航天领域顶级期刊,中科院1区,Top期刊,IF:4.1)

[7] Wang X, Jiao X, Liang P, et al. A Liquid-solid Triboelectric Sensor for Minor and Invisible Leakage Monitoring in Ship Pipelines[J]. IEEE Sensors Journal, 2023, 24(3): 3944-3951.(中科院2区,IF:4.3)

[8] Sun H, Sun Q, Sun M, et al. Accurate Modeling and Homing Control for Parafoil Delivery System based on Wind Disturbance Rejection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, early access.(航空航天领域顶级期刊,中科院1区,Top期刊,IF:4.1)

[9] Sun H, Sun Q, Wu W, et al. Altitude control for flexible wing unmanned aerial vehicle based on active disturbance rejection control and feedforward compensation[J]. International Journal of Robust and Nonlinear Control, 2020, 30(1): 222-245.(中科院1区,Top期刊,IF:4.4)

[10] Jiao X, Zhao Y, Wang X, et al. Learning-based acoustic displacement field modeling and micro-particle control[J]. Expert Systems with Applications, 2024, 237: 121503.(中科院1区,Top期刊,IF:8.1)

[11] Zhu H, Sun Q, Tao J, et al. Fluid-structure interaction simulation for performance prediction and design optimization of parafoils[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): 2194359.(中科院1区,Top期刊,IF:6.1)

[12] Zhu H, Sun Q, Liu X, et al. Fluid–structure interaction-based aerodynamic modeling for flight dynamics simulation of parafoil system[J]. Nonlinear Dynamics, 2021: 1-22.(中科院1区,Top期刊,IF:5)

[13] Zhu H, Sun Q, Sun H, et al. Aerodynamic prediction for flight dynamics simulation of parafoil system and airdrop test validation[J]. Nonlinear Dynamics, 2023, 111(12): 11065-11085.(中科院1区,Top期刊,IF:5)

[14] Luo S, Sun Q, Sun M, et al. On decoupling trajectory tracking control of unmanned powered parafoil using ADRC-based coupling analysis and dynamic feedforward compensation[J]. Nonlinear Dynamics, 2018, 92(4): 1619-1635.(中科院1区,Top期刊,IF:5)

[15] Luo S, Sun Q, Wu W, et al. Accurate flight path tracking control for powered parafoil aerial vehicle using ADRC-based wind feedforward compensation[J]. Aerospace Science and Technology, 2019, 84: 904-915.(中科院1区,Top期刊,IF:4.5)

[16] Zheng Y, Tao J, Sun Q, et al. DDPG-based active disturbance rejection 3D path-following control for powered parafoil under wind disturbances[J]. Nonlinear Dynamics, 2023, 111(12): 11205-11221.(中科院1区,Top期刊,IF:5)

[17] Tao J, Sun Q, Tan P, et al. Active disturbance rejection control (ADRC)-based autonomous homing control of powered parafoils[J]. Nonlinear dynamics, 2016, 86(3): 1461-1476.(中科院1区,Top期刊,IF:5)

[18] Zhu E, Sun Q, Tan P, et al. Modeling of powered parafoil based on Kirchhoff motion equation[J]. Nonlinear Dynamics, 2015, 79(1): 617-629.(中科院1区,Top期刊,IF:5)

[19] Wu W, Sun Q, Sun M, et al. Modeling and control of parafoils based on computational fluid dynamics[J]. Applied Mathematical Modelling, 2019, 70: 378-401.(中科院1区,Top期刊,IF:5.1)

[20] Tao J, Sun Q, Liang W, et al. Computational fluid dynamics based dynamic modeling of parafoil system[J]. Applied Mathematical Modelling, 2018, 54: 136-150.(中科院1区,Top期刊,IF:5.1)

[21] Zheng Y, Tao J, Sun Q, et al. Sideslip angle estimation based active disturbance rejection 3D trajectory tracking control for powered parafoil system and hardware-in-the-loop simulation verification[J]. Aerospace Science and Technology, 2023, 141: 108497.(中科院1区,Top期刊,IF:4.5)

[22] Sun H, Sun Q, Luo S, et al. In-flight compound homing methodology of parafoil delivery systems under multiple constraints[J]. Aerospace Science and Technology, 2018, 79: 85-104.(中科院1区,Top期刊,IF:4.5)

[23] Sun H, Luo S, Sun Q, et al. Trajectory optimization for parafoil delivery system considering complicated dynamic constraints in high-order model[J]. Aerospace Science and Technology, 2020, 98: 105631.(中科院1区,Top期刊,IF:4.5)

[24] Zhuang H, Sun Q, Chen Z, et al. Robust adaptive sliding mode attitude control for aircraft systems based on back-stepping method[J]. Aerospace Science and Technology, 2021, 118: 107069.(中科院1区,Top期刊,IF:4.5)

[25] Sun H, Wang F, Sun Q, et al. Distributed consensus algorithm for multiple parafoils in mass airdrop mission based on disturbance rejection[J]. Aerospace Science and Technology, 2021, 109: 106437. (中科院1区,Top期刊,IF:5.1)

[26] Zhu H, Sun Q, Tao J, et al. Flexible modeling of parafoil delivery system in wind environments[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106210.(中科院1区,Top期刊,IF:4.2)

[27] Sun Q, Yu L, Tao J, et al. Trajectory tracking control of powered parafoil system based on sliding mode control in a complex environment[J]. Aerospace Science and Technology, 2022, 122: 107406.(中科院1区,Top期刊,IF:5.1)

[28] Zheng Y, Tao J, Hartikainen J, et al. DDPG based LADRC trajectory tracking control for underactuated unmanned ship under environmental disturbances[J]. Ocean Engineering, 2023, 271: 113667.(中科院1区,Top期刊,IF:5)

[29] Li J, Zhang C, Sun Q, et al. Coevolution between strategy and social networks structure promotes cooperation[J]. Chaos, Solitons & Fractals, 2015, 77: 253-263.(中科院1区,Top期刊,IF:5.9)

[30] Zheng Y, Tao J, Sun Q, et al. An intelligent course keeping active disturbance rejection controller based on double deep Q‐network for towing system of unpowered cylindrical drilling platform[J]. International Journal of Robust and Nonlinear Control, 2021, 31(17): 8463-8480.(中科院1区,Top期刊,IF:4.4)

[31] Yu Z, Tan P, Sun Q, et al. Longitudinal wind field prediction based on DDPG[J]. Neural Computing and Applications, 2022, 34(1): 227-239.(中科院2区,IF:5.6)

[32] Zheng Y, Sun Q, Chen Z, et al. Deep Q-Network based real-time active disturbance rejection controller parameter tuning for multi-area interconnected power systems[J]. Neurocomputing, 2021, 460: 360-373.(中科院2区,IF:5.7)

[33] Zheng Y, Tao J, Sun Q, et al. Deep reinforcement learning based active disturbance rejection load frequency control of multi-area interconnected power systems with renewable energy[J]. Journal of the Franklin Institute, 2023, 360(17): 13908-13931.(中科院2区,IF:4.3)

[34] Li J, Zhang C, Sun Q, et al. Changing intensity of interaction can resolve prisoner's dilemmas[J]. EPL (Europhysics Letters), 2016, 113(5): 58002. (中科院3区,IF:1.9)

[35] Zhuang H, Sun Q, Chen Z. Sliding mode control for electro‐hydraulic proportional directional valve‐controlled position tracking system based on an extended state observer[J]. Asian Journal of Control, 2021, 23(4): 1855-1869.(中科院3区,IF:3.4)

[36] Zhuang H, Sun Q, Chen Z, et al. Active disturbance rejection control for attitude control of missile systems based on back-stepping method[J]. International Journal of Control, Automation and Systems, 2021, 19(11): 3642-3656.(中科院3区,IF:3.3)

[37] Zhuang H, Sun Q, Chen Z, et al. Back-stepping Active Disturbance Rejection Control for Attitude Control of Aircraft Systems Based on Extended State Observer[J]. International Journal of Control, Automation and Systems, 2021, 19(6): 2134-2149.(中科院3区,IF:3.3)

[38] Sun H, Sun Q, Chen Z, et al. An optimal‐multiphase homing methodology for powered parafoil systems[J]. Optimal Control Applications and Methods, 2020, 41(4): 1118-1142.(中科院3区,IF:2.5)

[39] Tan P, Sun Q, Chen Z, et al. Characteristic model–based generalized predictive control and its application to the parafoil and payload system[J]. Optimal Control Applications and Methods, 2019, 40(4): 659-675.(中科院3区,IF:2.5)

[40] Luo S, Tan P, Sun Q, et al. In-flight wind identification and soft landing control for autonomous unmanned powered parafoils[J]. International Journal of Systems Science, 2018, 49(5): 929-946.(中科院3区,IF:2.2)

[41] Sun H, Sun Q, Wu W, et al. Flexible modelling and altitude control for powered parafoil system based on active disturbance rejection control[J]. International Journal of Systems Science, 2019, 50(12): 2385-2408.(中科院3区,IF:2.2)

[42] Wu W, Sun Q, Luo S, et al. Accurate calculation of aerodynamic coefficients of parafoil airdrop system based on computational fluid dynamic[J]. International Journal of Advanced Robotic Systems, 2018, 15(2): 1729881418766190.(中科院4区,IF:1.6)

[43] Zhu H, Sun Q, Tao J, et al. Fluid-Structure Interaction Simulation and Accurate Dynamic Modeling of Parachute Warhead System Based on Impact Point Prediction[J]. IEEE Access, 2021, 9: 104418-104428.(中科院3区,IF:3.3)

[44] Sun H, Sun Q, Tao J, et al. A hybrid control approach for powered parafoil combining active disturbance rejection control and unbalanced load compensation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2018, 232(3): 299-314.(中科院4区,IF:1.7)

[45] Luo S, Sun Q, Tan P, et al. Soft landing control of unmanned powered parafoils in unknown wind environments[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(3): 949-968.(中科院4区,IF:1)

[46] Zhuang H, Sun Q, Chen Z, et al. Sliding Mode Robust Control for Maximum Allowable Vertical Tail Damage to Aircraft Based on Linear Matrix Inequality[J]. Journal of Aerospace Engineering, 2021, 34(4): 05021001.(中科院3区,IF:1.9)

[47] Liu S, Wang L, Li C, et al. Disturbance Rejection Control With Voltage Constraint for Electro-Hydraulic System Involving Unknown Dead-Zones and Drastic Supply Pressure Variation[J]. IEEE Access, 2020, 8: 84551-84568.(中科院3区,IF:3.3)

[48] Tao J, Sun Q, Chen Z, et al. NSGAII based multi-objective homing trajectory planning of parafoil system[J]. Journal of Central South University, 2016, 23(12): 3248-3255.(中科院3区,IF:1.7)

[49] Tao J, Sun Q, Chen Z, et al. Dynamic modeling of a parafoil system considering flap deflection[J]. Journal of Southeast University, 2017, 33(4): 416-425.(中科院3区,IF:1.7)



Chinese:

[1] 檀盼龙,孙青林,高海涛,陈增强.动力翼伞系统空投风场的辨识与应用[J].航空学报,2016,37(07):2286-2294.

[2] 罗淑贞,孙青林,檀盼龙,陶金,贺应平,罗浩文.基于高斯伪谱法的翼伞系统复杂多约束轨迹规划[J].航空学报,2017,38(03):220-230.

[3] 陶金,孙青林,陈增强,贺应平.翼伞系统在较大风场中的归航控制[J].控制理论与应用,2016,33(12):1630-1638.

[4] 孙青林,梁炜,陶金,罗淑贞,陈增强,贺应平.基于CFD与最小二乘法的翼伞动力学建模[J].北京理工大学学报,2017,37(02):157-162+167.

[5] 陶金,孙青林,檀盼龙,邬婉楠,陈增强,贺应平.翼伞系统在未知风场中的归航控制[J].航空学报,2017,38(05):191-201.

[6] 孙青林,梁炜,陈增强,贺应平.襟翼偏转翼伞气动性能数值模拟分析[J].哈尔滨工业大学学报,2017,49(04):48-54.

[7] 孙青林,梁炜,陶金,罗淑贞,陈增强,贺应平.基于CFD的风雨环境翼伞动力学建模[J].中南大学学报(自然科学版),2017,48(08):2053-2062.

[8] 陶金,孙青林,陈增强,贺应平.基于LADRC的翼伞系统轨迹跟踪控制[J].哈尔滨工程大学学报,2018,39(03):510-516.

[9] 陶金,孙青林,陈增强,贺应平.伞翼无人机线性自抗扰高度控制[J].国防科技大学学报,2017,39(06):103-110.

[10]孙青林,陈赛,孙昊,陈增强,孙明玮,檀盼龙.复杂扰动下的动力翼伞轨迹跟踪控制[J].哈尔滨工程大学学报,2019,40(07):1319-1326.

[11]朱虹,孙青林,邬婉楠,孙明玮,陈增强.伞翼无人机精确建模与控制[J].航空学报,2019,40(06):79-91.

[12]孙昊,孙青林,滕海山,周朋,陈增强.复杂环境下考虑动力学约束的翼伞轨迹规划[J].航空学报,2021,42(03):372-381.

[13]刘胜斐,孙青林,陈增强,丁祉峰.比例阀控电液系统抗扰换向滞后补偿反步控制[J].控制理论与应用,2020,37(07):1521-1534.

[14]范俞超,孙青林,董方酉,陈增强.基于粒子群算法–反向传播神经网络自适应的氧调器控制系统[J].控制理论与应用,2020,37(03):687-695.

[15]孙青林,梁炜,陈增强,贺应平.襟翼偏转翼伞气动性能数值模拟分析[J].哈尔滨工业大学学报,2017,49(04):48-54.


讲授课程

模拟电子技术、数字电子技术、嵌入式控制系统,运动控制,决策支持系统。

社会兼职

 

 

 

 

 

 

 

上一条:孙宁 下一条:苑晶

关闭